S'-convolvability with the Poisson kernel in the Euclidean case and the product domain case

Josefina Alvarez
Department of Mathematics
New Mexico State University
Las Cruces, NM 88003, USA
E-mail: jalvarez@nmsu.edu

Martha Guzmán-Partida
Departamento de Matemática
Universidad de Sonora
Hermosillo, Sonora 83000, México
E-mail: martha@gauss.mat.uson.mx

Urszula Skórnik
Warsaw University of Agriculture
Nowoursynowska 166
02-787 Warszawa, Poland
E-mail: skorp@bri.kei.sggw.waw.pl

Abstract
We obtain real-variable and complex-variable formulas for the integral of an integrable distribution in the n-dimensional case. These formulas involve specific versions of the Cauchy kernel and the Poisson kernel, namely, the Euclidean version and the product domain version.

02000 Mathematics Subject Classification. 46F10, 46F05, 46F12.
Key words and phrases. S'-convolution, Poisson kernel, weighted distribution spaces.
We interpret the real-variable formulas as integrals of S'-convolutions. We characterize those tempered distribution that are S'-convolvable with the Poisson kernel in the Euclidean case and the product domain case. As an application of our results we prove that every integrable distribution on \mathbb{R}^n has a harmonic extension to the upper-half space \mathbb{R}^{n+1}.

1 Introduction

The main purpose of this article is to study the convolvability of tempered distributions with the Poisson kernel. A motivation for our work is to develop complex-variable and real-variable representation formulas for the integral of an integrable distribution ([14], p. 243) in various n-dimensional settings. The complex-variable representation formula was obtained by W. Kierat and U. Skórnik in [10] in the one-dimensional case.

Several definitions of convolution have been introduced by different authors (see [6]-[16]) to treat the problem of convolvability of two tempered distributions. We consider here the so called S'-convolution, a commutative operation that extends to appropriate pairs of tempered distributions the classical convolution of distributions as defined by L. Schwartz in [14], preserving the Fourier exchange formula $\mathcal{F}(T \ast S) = \mathcal{F}(T) \cdot \mathcal{F}(S)$. In view of this formula, it is not possible to use the classical definition of convolution because the Fourier transform of the Poisson kernel is not indefinitely differentiable, so it does not belong to the space \mathcal{O}_M defined by L. Schwartz in [14], p. 243.

When working in \mathbb{R}^n with $n > 1$, it is natural to consider two versions of the Poisson kernel, namely, the Euclidean version and the product domain version. For each of them, we identify optimal spaces of distributions that are S'-convolvable with the appropriate Poisson kernel. To prove these results we obtain simple characterizations of the space of distributions involved in each case. As an application of our results we prove that every integrable distribution on \mathbb{R}^n can be extended to a harmonic function in the upper-half space \mathbb{R}^{n+1}. In this regard, we extend a classical result of S. Bochner for integrable functions ([3], [4]), as well as a result of H. Bremermann for distributions with compact support in \mathbb{R} ([5], p. 49). We also consider the product of n upper-half planes, $\mathbb{R}_+^2 \times \ldots \times \mathbb{R}_+^2$, where the appropriate notion of harmonicity is the more restrictive notion of harmonicity in each upper-half
plane. In this context we are able to obtain a result of H. Bremermann ([5], p. 152).

The article is organized as follows: In Section 2 we include definitions and auxiliary results. In Section 3 we give real-variable and complex-variable formulas for the integral of an integrable distribution in the n-dimensional case, both involving Euclidean and product domain versions of the Poisson kernel and, in Section 4 we reinterpret the integrands on these formulas as S'-convolutions. In Section 5 we present our main results, namely, for each version of the Poisson kernel, we characterize those tempered distributions that are S'-convolvable with it. The proofs are based on appropriated characterizations of the weighted spaces of distributions relevant to each case. Finally, in Section 6 we apply our results to obtain harmonic extensions of integrable distributions. The article ends with a list of references.

The notation used in this article is standard. The symbols C_0^∞, S, C^∞, L^p, L^p_{loc}, D', S', E', etc., indicate the usual spaces of distributions or functions defined on \mathbb{R}^n, with complex values. The symbol $\| \cdot \|$ denotes the Euclidean norm on \mathbb{R}^n, while $\| \cdot \|_p$ denotes the norm in the space L^p. When we need to emphasize that we are working on a particular setting, we will write $D'(\mathbb{R})$, $S(\mathbb{R}^2)$, $\| \cdot \|_{L^p(K)}$, etc. Partial derivatives will be denoted as ∂^α or $\frac{\partial^\alpha}{\partial x^\alpha}$, where α is a multi-index $(\alpha_1, ..., \alpha_n)$. We will use the abbreviations $|\alpha| = \alpha_1 + ... + \alpha_n$, $x^\alpha = x_1^{\alpha_1} ... x_n^{\alpha_n}$. For a function g, we will indicate with \hat{g} the function $x \to g(-x)$. Given a distribution T, we will indicate with \check{T} the distribution $\varphi \to \left(T, \varphi \right)$, where φ is an appropriate test function. The Fourier transform will be indicated as \mathcal{F}. The letter C will denote a positive constant, that may change at different occurrences.

Other notation will be introduced at the appropriate time.

Acknowledgement. The first named author was partially supported by a Manasse Chair Award from the College of Arts and Sciences at New Mexico State University.

2 Preliminaries

We start by introducing the spaces of functions and distributions that we will use along this work ([14], p. 199):

$$B = \{ \varphi : \mathbb{R}^n \to \mathbb{C} : \varphi \in C^\infty, \partial^\alpha \varphi \text{ is bounded for each multi-index } \alpha \}$$
endowed with the topology of the uniform convergence on \mathbb{R}^n of each derivative.

\[B = \{ \varphi : \mathbb{R}^n \to C : \varphi \in C^\infty, \partial^\alpha \varphi \to 0 \text{ as } |x| \to \infty, \text{ for each multi-index } \alpha \}. \]

B is a closed subspace of B and the space C_0^∞ is dense in B.

D_{L^1}' will denote the strong dual of B. D_{L^1}' is a subspace of D', the space of distributions. It can be proved ([14], p. 201), that given $T \in D_{L^1}'$, we have the representation

\[T = \sum_\alpha \partial^\alpha f_\alpha \] \hspace{1cm} (1)

where the functions f_α belong to L^1 and the sum is finite. The distributions in D_{L^1}' are called integrable distributions. As a consequence of (1), we have the inclusions $E' \subset D_{L^1}' \subset S'$.

The pointwise multiplication is well defined and continuous from $B \times B$ into B and from $B \times B$ into B. As a consequence, the space D_{L^1}' is closed under multiplication by functions in B.

Following [14], p. 203, we will consider in B an alternative notion of convergence:

A sequence $\{ \varphi_j \}$ converges to φ if, for each multi-index α, $\sup_j \| \partial^\alpha \varphi_j \|_{C^0} < \infty$ and the sequence $\{ \partial^\alpha \varphi_j \}$ converges to $\partial^\alpha \varphi$ uniformly on compact sets. In other words, this is the uniform convergence of each derivative on the bounded subsets of B.

We will denote as B_c the space B endowed with this notion of convergence. It can be proved that $C_{L^1}^\infty$, and so B_c, is dense in B_c ([14], p. 203). Moreover, given a distribution T in D_{L^1}', since T is well defined on C_0^∞ and it is continuous with respect to the topology of B_c, T can be uniquely extended to a linear and continuous functional on B_c. In this sense we can say that D_{L^1}' and B_c are in duality. In fact, it can be proved that D_{L^1}' is also the dual of B_c ([14] p. 203).

Y. Hirata and H. Ogata [7] defined the notion of S'-convolution in order to extend the validity of the Fourier exchange formula

\[\mathcal{F} (T * S) = \mathcal{F} (T) \cdot \mathcal{F} (S) \]

Many authors have studied and applied this notion of S'-convolution (see for instance [16], [15], [8], [6], [9], [11], [12], [13], [1], [2]). In particular, R.
Shiraishi proved in [16] an equivalent definition, which is the one we will use here.

Definition 1 ([16]) Given two tempered distributions T and S, we say that the S'-convolution exists if $T (\tilde{S} \ast \varphi) \in D'_{L^1}$ for each $\varphi \in S$. When the S'-convolution exists, the map

$$
S \to \mathbb{C}
$$

$$
\varphi \to (T (\tilde{S} \ast \varphi) , 1)_{D'_{L^1}, B_{c}}
$$

is linear and continuous. Thus, it defines a tempered distribution which will be denoted by $T \ast S$.

In this definition, $T (\tilde{S} \ast \varphi)$ denotes the multiplicative product of the distribution T with the regularization $(\tilde{S} \ast \varphi)$. This product is well defined because the regularization is a C^∞ function of polynomial growth with all its derivatives ([14], p. 248).

It was proved by R. Shiraishi in [16] that $T \ast S$ exists if and only if $S \ast T$ exists, and they coincide. Moreover, this definition coincides with the definition given by L. Schwartz in all the cases in which Schwartz’s definition is applicable.

3 The integral of an integrable distribution in the n-dimensional case

L. Schwartz defined in [14], p. 243 the integral of an integrable distribution as

Definition 2 ([14]) Given $T \in D'_{L^1} (\mathbb{R}^n)$, the integral of T, denoted $\int T$, is defined as

$$
\int T = (T, 1)_{D'_{L^1}, B_c}.
$$

This definition certainly coincides with the usual Lebesgue integral when T is a function in $L^1 (\mathbb{R}^n)$. In general, given $T \in D'_{L^1} (\mathbb{R}^n)$ we can represent T as a finite sum,

$$
T = \sum_{\alpha} \partial^\alpha f_{\alpha}
$$
where \(f_\alpha \in L^1(\mathbb{R}^n) \). Thus

\[
(T, 1)_{D_{L^1,B_c}'} = (f_0, 1)_{L^1,L^\infty} = \int_{\mathbb{R}^n} f_0(x) dx.
\]

W. Kierat and U. Skórnik obtained in [10] the following formula for the integral of an integrable distribution, in one dimension:

Proposition 3 ([10]) If \(T \in D'_{L^1}(\mathbb{R}) \), then

\[
(T, 1)_{D_{L^1,B_c}'} = \int_{-\infty}^{\infty} [C(T)(x + iy) - C(T)(x - iy)] dx
\]

independently of \(y > 0 \). Here \(C(T) \) is the Cauchy transform of \(T \), defined for \(z \in \mathbb{C} \setminus \mathbb{R} \) as

\[
C(T)(z) = (T_t, C(t - z))_{D_{L^1,B_c}'}.
\]

where \(C(z) = \frac{1}{2\pi i z} \) is the one-dimensional Cauchy kernel.

The right-hand side of (4) will be called the complex-variable version of the integral of \(T \).

We can give a real-variable version of (4). In fact, let us observe that

\[
\frac{1}{2\pi i t - x - iy} - \frac{1}{2\pi i t - x + iy} = \frac{y}{\pi (t - x)^2 + y^2} = P_y(x - t)
\]

for every \((x, y) \in \mathbb{R}^2_+\), where

\[
P_y(x) = \frac{1}{y \pi \left((x/y)^2 + 1\right)}
\]

is the one-dimensional Poisson kernel. Thus, we can write

\[
C(T)(x + iy) - C(T)(x - iy) = (T_t, P_y(x - t))_{D_{L^1,B_c}'}.
\]

Since \(\int_{-\infty}^{\infty} P_y(x) dx = 1 \) for each \(y > 0 \), we have

\[
(T, 1)_{D_{L^1,B_c}'} = \left(T_t, \int_{-\infty}^{\infty} P_y(x - t) dx\right)_{D_{L^1,B_c}'}
\]
We claim that we can exchange the integral with the action of the distribution T. Let us prove this claim. Using the representation (3) for the distribution T, we can assume that $T = \partial^{\alpha} f$ for $f \in L^1(\mathbb{R})$. Thus, we can write

$$\left(T_t, \int_{-\infty}^{\infty} P_y(x-t)dx \right)_{D'_{L^1},B_c} = (-1)^{[\alpha]} \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} \partial^{\alpha}_{t} P_y(x-t)dx \right) dt$$

The function $t \to P_y(x-t)$ is indefinitely differentiable for each $x \in \mathbb{R}, y > 0$. Moreover the function $x \to \partial^{\alpha}_{t} P_y(x-t)$ is integrable on \mathbb{R} for each $t \in \mathbb{R}, y > 0$. Thus, we can exchange the derivative and the integration to obtain

$$\left(T_t, \int_{-\infty}^{\infty} P_y(x-t)dx \right)_{D'_{L^1},B_c} = (-1)^{[\alpha]} \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} \partial^{\alpha}_{t} P_y(x-t)dx \right) dt$$

Now the function $(x, t) \to (-1)^{[\alpha]} f(t) \partial^{\alpha}_{t} P_y(x-t)$ is integrable on \mathbb{R}^2 for each $y > 0$. So, applying Fubini Theorem, we can write

$$(-1)^{[\alpha]} \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} \partial^{\alpha}_{t} P_y(x-t)dx \right) dt =$$

$$(-1)^{[\alpha]} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \partial^{\alpha}_{t} P_y(x-t)dx \right) dt =$$

$$(-1)^{[\alpha]} \int_{-\infty}^{\infty} (f(t), \partial^{\alpha}_{t} P_y(x-t))_{D'_{L^1},L^\infty} dx = \int_{-\infty}^{\infty} (\partial^{\alpha}_{t} f(t), P_y(x-t))_{D'_{L^1},B_c} dx$$

Thus the claim is proved. We can then write

$$(T, 1)_{D'_{L^1},B_c} = \int_{-\infty}^{\infty} (T_t, P_y(x-t))_{D'_{L^1},B_c} dx \quad (7)$$

The right-hand side of (7) is the real-variable version of the integral of T.

In the n-dimensional case, one should be able as well to recognize a complex-variable version and a real-variable version of the integral of a distribution $T \in D'_{L^1}$. For the real-variable version, one could choose different extensions of $P_y(x)$ to the n-dimensional case, namely, the Euclidean version

$$P_y(x) = \frac{c(n)}{y^n} \frac{1}{(|x|^2/y^2 + 1)^{(n+1)/2}}, \quad (8)$$
where $c(n) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}}$, $y > 0$, or any product domain version, for instance,

$$P_{(y)}(x) = P_{y_1}(x_1)\ldots P_{y_n}(x_n),$$

where $(y) > 0$, meaning that $y_1, \ldots, y_n > 0$. Of course, depending on how we group the coordinates in \mathbb{R}^n, we will obtain different versions, all of which will give the same definition of $\int T$. For our choice (9), the product domain we are considering is the cartesian product $\mathbb{R}_+^2 \times \ldots \times \mathbb{R}_+^2$ of n-copies of the upper-half plane.

In any case, the n-dimensional real-variable realization of (2) holds with a similar proof as in the one-dimensional case. For the sake of completeness we will state now this result for the kernels given by (8) and (9). The proof is the same as the one given in the one dimensional case.

Proposition 4 If $T \in D'_{L^1}$, then

$$(T, 1)_{D'_{L^1}, B_c} = \int_{\mathbb{R}^n} (T_t, P_y(x - t)) \, dx, \quad y > 0 \quad (10)$$

and also

$$(T, 1)_{D'_{L^1}, B_c} = \int_{\mathbb{R}^n} (T_t, P_{(y)}(x - t)) \, dx, \quad (y) > 0. \quad (11)$$

In order to obtain an n-dimensional complex-variable realization of (2), we need to select an appropriate n-dimensional version of the Cauchy kernel $C(z) = \frac{1}{2\pi i z}$. Once again, we can consider the Euclidean case or the product domain case.

In the Euclidean case we will consider the kernel $K_n(z_1, \ldots, z_n)$ defined as

$$K_n(z_1, \ldots, z_n) = \frac{c(n)}{2i} \frac{\sum_{j=1}^{n} \bar{z}_j}{\left(\sum_{j=1}^{n} |z_j|^2 \right)^{\frac{n+1}{2}}} \quad (12)$$

where the positive constant $c(n)$ is chosen so that

$$c(n) \int_{\mathbb{R}^n} \frac{du}{\left(|u|^2 + 1 \right)^{\frac{n+1}{2}}} = 1 \quad (13)$$
The kernel K_n is a non-holomorphic version of the kernel C when $n > 1$ and it coincides with C when $n = 1$. Given $T \in D'_{L^1}(\mathbb{R}^n)$, we define the n-dimensional Cauchy transform of T, $K_n(T)$, as

$$K_n(T)(z_1, ..., z_n) = (T_t, K_n(t_1 - z_1, ..., t_n - z_n))_{D'_{L^1}, B}.$$

We have the following result:

Proposition 5 If $T \in D'_{L^1}(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} [K_n(T)(x_1 + iy, x_2, ..., x_n) - K_n(T)(x_1 - iy, x_2, ..., x_n)] dx_1 dx_2 ... dx_n$$

independently of $y > 0$.

Proof. The proof of (14) is based on the fact that

$$c(n) \int_{\mathbb{R}^n} K_n(t_1 - x_1 - iy, t_2 - x_2, ..., t_n - x_n) - K_n(t_1 - x_1 + iy, t_2 - x_2, ..., t_n - x_n) dx_1 dx_2 ... dx_n = 1$$

independently of $t_1, ..., t_n \in \mathbb{R}$ and $y > 0$. □

The integral $(T, 1)_{D'_{L^1}, B}$ can also be computed using the substitutions $z_j = x_j + iy$ for any fixed $j = 1, ..., n$, $z_l = x_l$ for $l \neq j$.

Formula (14) will be adopted as the n-dimensional complex-variable version of the integral of T in the Euclidean case.

To obtain a product domain version, we will assume for clarity that our product domain is $\mathbb{R} \times \mathbb{R}$. The exact same techniques will apply to a Cartesian product with any number of factors, grouped in any way. Depending on the grouping, the formulas may look a little more complicated.

Let us fix $T \in D'_{L^1}(\mathbb{R}^2)$. We know that T has the representation (3), $T = \sum_{\alpha} \partial^{\alpha} f_{\alpha}$ where $f_{\alpha} \in L^1(\mathbb{R}^2)$. Using this representation, we can obtain a “Fubini Theorem” for integrable distributions. In fact,

$$\int_{\mathbb{R}^n} [K_n(T)(x_1 + iy, x_2, ..., x_n) - K_n(T)(x_1 - iy, x_2, ..., x_n)] dx_1 dx_2 ... dx_n$$

independently of $y > 0$. □

The integral $(T, 1)_{D'_{L^1}, B}$ can also be computed using the substitutions $z_j = x_j + iy$ for any fixed $j = 1, ..., n$, $z_l = x_l$ for $l \neq j$.

Formula (14) will be adopted as the n-dimensional complex-variable version of the integral of T in the Euclidean case.

To obtain a product domain version, we will assume for clarity that our product domain is $\mathbb{R} \times \mathbb{R}$. The exact same techniques will apply to a Cartesian product with any number of factors, grouped in any way. Depending on the grouping, the formulas may look a little more complicated.

Let us fix $T \in D'_{L^1}(\mathbb{R}^2)$. We know that T has the representation (3), $T = \sum_{\alpha} \partial^{\alpha} f_{\alpha}$ where $f_{\alpha} \in L^1(\mathbb{R}^2)$. Using this representation, we can obtain a “Fubini Theorem” for integrable distributions. In fact,
\[
\sum_{\alpha}(-1)^{\alpha_1+\alpha_2} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f_{\alpha_1 \alpha_2} (x_1, x_2) \partial_{x_1}^{\alpha_1} \varphi_1 (x_1) \, dx_1 \right) \partial_{x_2}^{\alpha_2} \varphi_2 (x_2) \, dx_2
\]

(16)

We now observe that for each \(x_2 \in \mathbb{R} \), the integrable function \(f_{\alpha_1 \alpha_2} (\cdot, x_2) \) acts on \(\partial_{x_1}^{\alpha_1} \varphi_1 \) in the duality \(\left(D_{L,1}' (\mathbb{R}) , \mathcal{B} (\mathbb{R}) \right) \). Likewise, the integrable function \((f_{\alpha_1 \alpha_2} (\cdot, x_2), \partial_{x_1}^{\alpha_1} \varphi_1)_{D_{L,1}'} \) acts on \(\partial_{x_2}^{\alpha_2} \varphi_2 (x_2) \) in the same duality. Thus, we can write,

\[
(T, \varphi_1 \otimes \varphi_2)_{D_{L,1}'} = \sum_{\alpha} \left(\partial_{x_2}^{\alpha_2} \left(\partial_{x_1}^{\alpha_1} f_{\alpha_1 \alpha_2}, \varphi_1 \right) \right)_{D_{L,1}'} \stackrel{d=2}{=} \left(T_{x_1}, \varphi_1 \right)_{D_{L,1}'} \otimes \left(\varphi_2 \right)_{D_{L,1}'}
\]

(17)

As a consequence of these calculations, we can write

\[
(T_t, P(y)(x - t))_{D_{L,1}'} = \left(T_{x_1}, P_{y_1} (x_1 - t_1) \right)_{D_{L,1}'} \otimes \left(P_{y_2} (x_2 - t_2) \right)_{D_{L,1}'}
\]

(19)

Similarly,

\[
(T_t, P(y)(x - t))_{D_{L,1}'} = \left(T_{x_2}, P_{y_2} (x_2 - t_2) \right)_{D_{L,1}'} \otimes \left(P_{y_1} (x_1 - t_1) \right)_{D_{L,1}'}
\]

(20)

From (6) and (19) , it follows that for every \(T \in D_{L,1}' (\mathbb{R}^2) \) we can write

\[
(T_t, P(y)(x - t))_{D_{L,1}'} = C_2 \left[C_1 (T) (x_1 + iy_1) - C_1 (T) (x_1 - iy_1) \right] (x_2 + iy_2) - C_2 \left[C_1 (T) (x_1 + iy_1) - C_1 (T) (x_1 - iy_1) \right] (x_2 - iy_2)
\]

(21)

where \(C_j \) denotes the action of the Cauchy transform \(C \) on the \(j \)-th coordinate, \(j = 1, 2 \).
From (6) and (20) we can also write
\[
(T_t, \mathcal{P}_y(x-t))_{D'_{L_1, B}} = C_1 [C_2(T)(x_2 + iy_2) - C_2(T)(x_2 - iy_2)](x_1 + iy_1) - \\
C_1 [C_2(T)(x_2 + iy_2) - C_2(T)(x_2 - iy_2)](x_1 - iy_1)
\]
(22)

Thus, we can state the following result:

Proposition 6 If \(T \in D'_{L_1}(\mathbb{R}^2)\), we have
\[
(T, 1)_{D'_{L_1, B}} = \int_{\mathbb{R}^2} \{C_2[C_1(T)(x_1 + iy_1) - C_1(T)(x_1 - iy_1)](x_2 + iy_2) - \\
C_2[C_1(T)(x_1 + iy_1) - C_1(T)(x_1 - iy_1)](x_2 - iy_2)\} \, dx_1dx_2
\]
(23)
\[
= \int_{\mathbb{R}^2} \{C_1[C_2(T)(x_2 + iy_2) - C_2(T)(x_2 - iy_2)](x_1 + iy_1) - \\
C_1[C_2(T)(x_2 + iy_2) - C_2(T)(x_2 - iy_2)](x_1 - iy_1)\} \, dx_1dx_2
\]
for any \(y_1, y_2 > 0\).

We adopt (23) as the 2-dimensional complex-variable version of the integral of \(T\) in the product domain case.

Let us point out that making repeated use of (5) we can see how the real-variable kernel \(P_y\) is related to the complex-variable kernel \(\mathcal{P}_y\), as well as how formulas (21) and (22) come about.

4 The integration formulas as integrals of \(S'\)-convolutions

It is possible to reinterpret the integrands in (10) and (11) as \(S'\)-convolutions. In fact, we have the following result:

Proposition 7 Given \(T \in D'_{L_1}\), the distribution \(T\) is \(S'\)-convolvable with both kernels \(P_y\) and \(\mathcal{P}_y\). Moreover, the \(S'\)-convolutions are given by
\[
(T_x, P_y(x-t))_{D'_{L_1, B}}
\]
(24)
and
\[
(T_x, \mathcal{P}_y(x-t))_{D'_{L_1, B}}
\]
(25)
for each \(y > 0\) and \((y) > 0\), respectively.
Proof. Let us first consider the S'-convolution with the kernel P_y. Given \(\varphi \in S \), it suffices to show that the classical convolution \(P_y \ast \varphi \) is a function in \(B \).

In fact, for each \(y > 0 \) the integral
\[
\frac{c(n)}{y^n} \int_{\mathbb{R}^n} \left(\frac{|x-t|^2}{y^2} + 1 \right)^{-\frac{n+1}{2}} \varphi(t) dt
\]
defines a \(C^\infty \) function that we denote \(f(x) \). We want to show that \(\partial^\alpha f \) is bounded on \(\mathbb{R}^n \) for each \(n \)-tuple \(\alpha \). We have
\[
\partial^\alpha f(x) = \frac{c(n)}{y^n} \int_{\mathbb{R}^n} \left(\frac{|x-t|^2}{y^2} + 1 \right)^{-\frac{n+1}{2}} (\partial^\alpha \varphi)(t) dt.
\]

We use now Peetre’s inequality,
\[
(|x-t|^2 + 1)^r \leq 2^{|r|} (|x|^2 + 1)^r (|t|^2 + 1)^{|r|}
\]
with \(r = -\frac{n+1}{2} \), to obtain
\[
|\partial^\alpha f(x)| \leq \frac{c(n)}{y^n} \left(\frac{|x|^2}{y^2} + 1 \right)^{\frac{n+1}{2}} \int_{\mathbb{R}^n} \left(\frac{|t|^2}{y^2} + 1 \right)^{\frac{n+1}{2}} |(\partial^\alpha \varphi)(t)| dt
\]
for each \(y > 0 \).

This estimate already shows that \(f \in B \) for each \(y > 0 \). However, we can obtain an explicit dependence on \(y \), by estimating the integral in (28). For \(y > 0 \) fixed, we write the integral as
\[
\int_{|t| < y} \left(\frac{|t|^2}{y^2} + 1 \right)^{\frac{n+1}{2}} |(\partial^\alpha \varphi)(t)| dt + \int_{|t| \geq y} \left(\frac{|t|^2}{y^2} + 1 \right)^{\frac{n+1}{2}} |(\partial^\alpha \varphi)(t)| dt = I_1 + I_2.
\]

We estimate each term separately.

\[
I_1 \leq c(n) \int_{|t| < y} |(\partial^\alpha \varphi)(t)| dt \leq c(n) \| (\partial^\alpha \varphi) \|_1
\]

\[
I_2 \leq c(n) \int_{|t| \geq y} \left(\frac{|t|}{y} \right)^{n+1} |(\partial^\alpha \varphi)(t)| dt \\
\leq \frac{c(n)}{y^{n+1}} \| t^{n+1} (\partial^\alpha \varphi) \|_1.
\]
Finally,
\[
|\partial^\alpha f(x)| \leq \frac{c(n)}{y^n} \left(\frac{|x|^2}{y^2} + 1 \right)^{-\frac{\alpha+1}{2}} \times \left[\| (\partial^\alpha \varphi) \|_1 + \frac{1}{y^{n+1}} ||t||^{n+1} (\partial^\alpha \varphi) \|_1 \right].
\]

(29)

Thus, the \(S\)-convolution \(T \ast P_y\) exists. We will now show that \(T \ast P_y\) is given by the integrable function \((T_x, P_y(x-t))_{D'_{L^1}B}\). Estimates (28) or (29) show in fact that \(P_y \ast \varphi\) belongs to \(\mathbb{B}\). So, we can write
\[
(T (P_y \ast \varphi), 1)_{D'_{L^1}B} = (T, P_y \ast \varphi)_{D'_{L^1}B} = \left(\sum_{\alpha} \partial^\alpha f_\alpha, P_y \ast \varphi \right)_{D'_{L^1}B}
\]
\[
= \sum_{\alpha} (-1)^{\alpha} \int_{\mathbb{R}^n} f_\alpha(x) (\partial^\alpha P_y \ast \varphi)(x) dx
\]
\[
= \sum_{\alpha} (-1)^{\alpha} \int_{\mathbb{R}^n \times \mathbb{R}^n} f_\alpha(x) \partial^\alpha P_y(x-t) \varphi(t) dt dx
\]
\[
= \sum_{\alpha} \int_{\mathbb{R}^n} (\partial^\alpha f_\alpha(x), P_y(x-t))_{D'_{L^1}B} \varphi(t) dt
\]
\[
= \int_{\mathbb{R}^n} (T_x, P_y(x-t))_{D'_{L^1}B} \varphi(t) dt.
\]

This concludes the proof of the claim. Similar calculations will show that \(T\) is \(S\)-convolvable with \(P_{(y)}\) for each \((y) > 0\) and that the \(S\)-convolution \(T \ast P_{(y)}\) is given by \((T_x, P_{(y)})_{D'_{L^1}B}\). This completes the proof of Proposition 7.

Doing the same work as in the proof of Proposition 7, we can show that the \(S\)-convolution (24) defines a function \(F(t, y)\) that belongs to \(C^\infty\) in the upper-half space \(\mathbb{R}^{n+1}_+\). Moreover,
\[
\partial^\alpha_t \partial^\beta_y F(t, y) = \left(T_x, \partial^\beta_y \left[\frac{1}{y^n} \partial^\alpha_t \left(P \left(\frac{x-t}{y} \right) \right) \right] \right)_{D'_{L^1}B}
\]

(30)

where \(P(x) = c(n) \left(1 + |x|^2 \right)^{-\frac{n+1}{2}}\). For each \(x \in \mathbb{R}^n\), the function \((t, y) \rightarrow \frac{1}{y^n} P \left(\frac{x-t}{y} \right)\) satisfies the equation \(\partial^\beta_y + \sum_{j=1}^n \partial^2_{t_j} = 0\). So, \(F(t, y)\) is a harmonic function in the upper-half space \(\mathbb{R}^{n+1}_+\).
Likewise, the S^\prime-convolution (25), defines a function $G(t, y)$ that belongs to C^∞ in the product domain $\mathbb{R}_+^2 \times \ldots \times \mathbb{R}_+^2$. The function $(t, y) \mapsto \prod_{j=1}^n \frac{1}{y_j} P \left(\frac{x_j - t_j}{y_j} \right)$ satisfies the n equations $\partial^2_{y_j} + \partial^2_{t_j} = 0$ in the product domain $\mathbb{R}_+^2 \times \ldots \times \mathbb{R}_+^2$. That is to say, $G(t, y)$ is harmonic on \mathbb{R}_+^2 on each pair of variables (t_j, y_j). A function with this property is called n-harmonic ([5], p. 148). An n-harmonic function is harmonic on $\mathbb{R}_+^2 \times \ldots \times \mathbb{R}_+^2$, although the converse is not true in general. For interesting connections with holomorphic functions in several variables, we refer again to [5].

5 Optimal spaces for the S^\prime-convolution with the kernels P_y and $P_{(y)}$

The fact that the functions $P_y \ast \varphi$ and $P_{(y)} \ast \varphi$ not only belong to the space B but also belong to the space B_\ast, suggests that $D_{L,1}'$ is not the largest class of tempered distributions that is S^\prime-convolvable with either kernel. In this section we will characterize the classes of tempered distributions that are S^\prime-convolvable with the kernels P_y and $P_{(y)}$, respectively.

We will first consider the S^\prime-convolution with the kernel P_y.

Estimate (29) suggests that the kernel P_y might be S^\prime-convolvable with distributions in weighted versions of the space $D_{L,1}'$. These weighted spaces appeared naturally in the study made by L. Schwartz ([14], p. 214), of Newtonian potentials of distributions, as well as in his paper [15]. For other occurrences of these spaces, see for instance [8], [9], [11], [12], [13], [1], [2].

Definition 8 Let $w(x) = \left(1 + |x|^2\right)^{\frac{1}{2}}$, for $x \in \mathbb{R}^n$ and let us fix $\mu \in \mathbb{R}$. Then

$$w^\mu D_{L,1}' = \{ T \in S' : w^{-\mu}T \in D_{L,1}' \}$$

with the topology induced by the map

$$w^\mu D_{L,1}' \rightarrow D_{L,1}'$$

$$T \mapsto w^{-\mu}T.$$

We observe that $w^\mu D_{L,1}'$ can also be defined as the space of those distributions $T \in D'$ such that $w^{-\mu}T \in D_{L,1}'$. In fact, if $w^{-\mu}T \in D_{L,1}'$ then T must be a tempered distribution.

We first obtain a representation of distributions in $w^\mu D_{L,1}'$ which is related to the representation obtained in [2] for the particular case $\mu = n$.

14
Proposition 9 Given \(T \in S' \), \(\mu \in \mathbb{R} \), the following statements are equivalent:

i) \(T \in w^\mu D'_{L^1} \).

ii) \(T = T_1 + |x|^\mu T_2 \), where \(T_1 \in E' \), \(T_2 \in D'_{L^1} \) and \(T_2 \) is zero in a neighborhood of zero.

Proof. We first assume that i) holds and we select a cut-off function \(\theta \in C_0^\infty \) so that \(0 \leq \theta \leq 1 \), \(\theta = 1 \) for \(|x| \leq \frac{1}{2} \), \(\theta = 0 \) for \(|x| \geq 1 \). Then, we write
\[
T = \theta T + (1 - \theta) T
\]
\[
= \theta T + (1 - \theta) \left(\frac{1 + |x|^2}{|x|^\mu} \right)^{\frac{\mu}{2}} |x|^{\mu} \left(1 + |x|^2 \right)^{-\frac{\mu}{2}} T.
\]
Since \((1 - \theta) \left(\frac{1 + |x|^2}{|x|^\mu} \right)^{\frac{\mu}{2}} \in B \) and \((1 + |x|^2)^{-\frac{\mu}{2}} T \in D'_{L^1} \), if we set \(T_1 = \theta T \), and \(T_2 = \frac{1 - \theta}{|x|^\mu} T \), we obtain the representation stated in ii).

The converse is quite direct, since \(E' \subset w^\mu D'_{L^1} \) and \(|x|^{\mu} T_2 \subset w^\mu D'_{L^1} \), for any distribution \(T \in D'_{L^1} \) that is zero near zero.

This completes the proof of Proposition 9. \(\blacksquare \)

The representation formula provided by Proposition 9 is only one of several possible representations. For example, given \(T \in w^\mu D'_{L^1} \), we have, in the sense of \(S' \)
\[
(1 + |x|^2)^{-\frac{\mu}{2}} T = \sum_\alpha \partial^\alpha f_\alpha
\]
or
\[
T = \sum_\alpha \left(1 + |x|^2 \right)^{\frac{\mu}{2}} \partial^\alpha f_\alpha \tag{31}
\]
where the sum is finite and \(f_\alpha \in L^1 \).

We are now ready to characterize those tempered distributions that are \(S' \)-convolvable with the kernel \(P_y \).

Theorem 10 Given \(T \in S' \), the following statements are equivalent:

i) \(T \in w^{n+1} D'_{L^1} \).

ii) \(T \) is \(S' \)-convolvable with \(P_y \) for each \(y > 0 \).
Proof. Let us assume that i) holds. We need to show that for each \(\varphi \in S \), the distribution \(T (P_y \ast \varphi) \) belongs to \(D'_{L_1} \), for each \(y > 0 \). In fact, as a consequence of (29), the function \((1 + |x|^2)^{\frac{n+1}{2}} (P_y \ast \varphi) \in B \), and so our claim is proved.

Conversely, let us fix \(T \in S' \) so that \(T (P_y \ast \varphi) \in D'_{L_1} \), for each \(\varphi \in S \), \(y > 0 \). We will prove that \(T \in w^{n+1}D'_{L_1} \) by showing that \(T \) can be represented as in Proposition 9. We consider a cut-off function \(\theta \) as in the proof of Proposition 9. Then, we can write,

\[
T = \theta T + (1 - \theta) T.
\]

We observe that \(\theta T \in E' \). Now, we consider a particular function \(\varphi \in S \), so that for some \(\varepsilon > 0 \), we have \(\varphi = 0 \) for \(|x| \geq \varepsilon \) and \(\varphi > 0 \) for \(|x| < \varepsilon \). We claim that for an appropriate choice of \(\varepsilon > 0 \) there exists \(C_n > 0 \) so that

\[
(P_y \ast \varphi)(x) \geq C_n \frac{y}{(|x|^2 + y^2)^{\frac{n+1}{2}}} \|\varphi\|_1 \tag{32}
\]

for \(|x| > \frac{1}{3} \).

In fact,

\[
(P_y \ast \varphi)(x) = \int |t| \leq \varepsilon \frac{c(n)}{y^n} \frac{\varphi(t)}{(1 + |x - t|^2 / y^2)^{\frac{n+1}{2}}} dt.
\]

If, say, \(0 < \varepsilon \leq \frac{1}{3} \), we have for \(|x| > \frac{1}{3} \),

\[
\frac{|x - t|}{y} \leq \frac{|x| + \varepsilon}{y} \leq 2 \frac{|x|}{y}
\]

and therefore

\[
(1 + |x - t|^2 / y^2)^{\frac{n+1}{2}} \leq (1 + 4 |x|^2 / y^2)^{\frac{n+1}{2}} \leq c(n) \frac{|x|^2 + y^2)^{\frac{n+1}{2}}}{y^{n+1}}.
\]

Thus, estimate (32) holds. If we combine estimates (32) and (29), we can conclude that for each \(y > 0 \), the function

\[
\frac{1 - \theta}{P_y \ast \varphi} (1 + |x|^2)^{-\frac{n+1}{2}}
\]
belongs to B and it is equal to zero, near zero. Thus, we can write

$$(1 - \theta) T = |x|^{n+1} \left(\frac{(1 + |x|^2)^{\frac{n+1}{2}}}{x^{n+1}} \right) \frac{1 - \theta}{P_y * \varphi} (1 + |x|^2)^{-\frac{n+1}{2}} T(P_y * \varphi)$$ \hspace{1cm} (33)

We conclude that the distribution T belongs to $w^{n+1}D'_{L_1}$. This completes the proof of Theorem 10. \qed

Remark 11 Given $T \in w^{n+1}D'_{L_1}$, the S'-convolution $T * P_y$ is given by $(T_x, P_y(x - t))$, where the pairing is understood as

$$\left((1 + |x|^2)^{-\frac{n+1}{2}} T_x, (1 + |x|^2)^{\frac{n+1}{2}} P_y(x - t) \right)_{D'_{L_1} \cdot \mathcal{B}_c}$$ \hspace{1cm} (34)

for each $t \in \mathbb{R}^n$, $y > 0$.

A similar pairing was proposed in [15], p. 16, for the S'-convolution of the distribution p.v.$\frac{1}{x}$ with distributions in the space $(1 + x^2)^{1/2}(\mathbb{R})$. Formula (34) can be proved in a similar way to the work done in the proof of Proposition 7, using this time the representation formula given by (31).

As in the case of D'_{L_1}, the function defined by (34) is a harmonic function of the variables t, y in the upper-half space \mathbb{R}^{n+1}_+. We now turn our attention to the kernel $P_{(y)} = \prod_{i=1}^n P_{y_i}$. We want to characterize those tempered distributions that are S'-convolvable with $P_{(y)}$.

The weighted D'_{L_1} space relevant to this task is introduced in the following definition.

Definition 12 Let $w_j = (1 + x_j^2)^{\frac{1}{2}}$, $j = 1, ..., n$. Then

$$w_1^2...w_n^2D'_{L_1} = \{ T \in S' : w_1^{-2}...w_n^{-2}T \in D'_{L_1} \}$$

with the topology induced by the map

$$w_1^2...w_n^2D'_{L_1} \to D'_{L_1}$$

$$T \to w_1^{-2}...w_n^{-2}T.$$

The space $w_1^2...w_n^2D'_{L_1}$ can be viewed as a weighted space of distributions in the product domain $\mathbb{R} \times ... \times \mathbb{R}$. We summarize in the proposition that follows several inclusion properties of $w_1^2...w_n^2D'_{L_1}$ with respect to relevant weighted spaces of distributions defined in the Euclidean space \mathbb{R}^n.

17
Proposition 13 For \(n \geq 2 \), the following statements hold:

a) The space \(w^{n+1}D'_{L^1} \) is contained, strictly, in the space \(w^{2n}D'_{L^1} \).

b) The space \(w^2 \ldots w^2_n D'_{L^1} \) is contained, strictly, in the space \(w^{2n}D'_{L^1} \).

c) There exist distributions in \(w^{n+1}D'_{L^1} \) that do not belong to \(w^2 \ldots w^2_n D'_{L^1} \).

d) There exist distributions in \(w^2 \ldots w^2_n D'_{L^1} \) that do not belong to \(w^{n+1}D'_{L^1} \).

Proof. We first consider a). Since \(w^2 \ldots w^2_n \) belongs to \(B \), we can conclude easily that \(w^{n+1}D'_{L^1} \) is contained, strictly, in the space \(w^{2n}D'_{L^1} \). To see that the inclusion is strict, we consider the tempered distribution \(T \) defined by the function \(j^{|x|^\beta} \), for some \(0 < \beta < n - 1 \). The distribution \(T \) belongs to \(w^{2n}D'_{L^1} \) because the function \(j^{|x|^\beta} \) is integrable on \(\mathbb{R}^n \). We claim that \(T \in w^{n+1}D'_{L^1} \). To prove this claim, we consider the sequence \(j^{(|x|/j)} = j^{(|x|/j)} \), where \(j = 1, 2, \ldots \), and \(\eta_j \in C^\infty_0 \), \(0 \leq \eta_j \leq 1 \), \(\eta_j = 1 \) for \(|x| < 1 \) and \(\eta_j = 0 \) for \(|x| > 2 \). It is quite simple to show that \(\eta_j \to 1 \) in \(B_c \), while for \(j \geq 2 \) we have

\[
(w^{-(n+1)}T, \eta_j)_{S',S} = \int_{\mathbb{R}^n} |x|^{n-\beta} \eta(x/j) \frac{dx}{(1 + |x|^2)^{n+1/2}} \\
\geq \int_{1<|x|<j} |x|^{n-\beta} \frac{dx}{(1 + |x|^2)^{n+1/2}} \\
\geq 2^{-n+1} \int_{1<|x|<j} \frac{dx}{|x|^{1+\beta}}
\]

Since \(\beta < n - 1 \), this last integral goes to \(\infty \) as \(j \to \infty \). Hence, \(w^{-(n+1)}T \notin D'_{L^1} \). This concludes the proof of a).

To prove the inclusion in b) we can use once again the fact that \(D'_{L^1} \) is closed under multiplication by functions in \(B \). Thus, since \(w^{2n}w^2 \ldots w^2_n \) \(\in B \), we have that \(w^2 \ldots w^2_n D'_{L^1} \subset w^{2n}D'_{L^1} \). To see that the inclusion is strict, consider this time the distribution \(S \) defined as

\[
S = \delta_0 \otimes \ldots \otimes \delta_0 \otimes (1 + x_n^2)^{\mu/2}
\]

where \(1 \leq \mu < n \). We will first show that \(w^{-n-1}S \) is continuous on \(C^\infty_0 \) with respect to the topology of \(B \). Indeed, given \(\varphi \in C^\infty_0 \) we have

\[
(w^{-(n+1)}S, \varphi)_{S',S} = \left((1 + x_n^2)^{-n+1/2}, \varphi(0, x_n) \right)_{S',S}.
\]
Since $\mu < n$, the function $(1 + x_n^2)^{-\frac{n+1-\mu}{2}}$ is integrable on \mathbb{R}. Thus, we get the estimate
\[
\left| (w^{-(n+1)}S, \varphi)_{S^*,S} \right| \leq C_n \|\varphi\|_{\infty}.
\]

This shows that $w^{-(n+1)}S \in D'_{L^1}$ and thus, $S \in w^{2n}D'_{L^1}$. On the other hand, if we consider the sequence $\beta_j(x) = \beta(x_1/j) \cdots \beta(x_n/j), j = 1, 2, \ldots$, where β is the one-dimensional version of the cut-off function η used in the proof of a), we have that $\beta_j \to 1$ in B_c. However,
\[
(w_1^{-2} \cdots w_n^{-2} S, \beta_j)_{S^*,S} = \int_{-\infty}^{\infty} (1 + x_n^2)^{-1+\mu/2} \beta(x_n/j) \, dx_n
\]
\[
\geq \int_0^\infty (1 + x_n^2)^{-1+\mu/2} \, dx_n
\]
and this integral goes to ∞ as $j \to \infty$ because $\mu \geq 1$. Hence $w_1^{-2} \cdots w_n^{-2} S \notin D'_{L^1}$. This concludes the proof of b).

Concerning the proof of c), the distribution S considered in b) provides a suitable example.

Finally, to prove d), we observe that the function $w_1^{-2} \cdots w_n^{-2}$ is not bounded along the diagonal $x_1 = \cdots = x_n$ when $n \geq 2$. This observation suggests the following example:

We consider the tempered distribution U defined as
\[
(U, \varphi)_{S^*,S} = \int_{-\infty}^{\infty} (1 + x_1^2)^{-n-1} \varphi(x_1, \ldots, x_1) \, dx_1
\]
(35)

We first show that $w_1^{-2} \cdots w_n^{-2} U$ is continuous on C_0^∞ with the topology of B. In fact, for $\varphi \in C_0^\infty$, we have
\[
(w_1^{-2} \cdots w_n^{-2} U, \varphi)_{S^*,S} = (U, w_1^{-2} \cdots w_n^{-2} \varphi)_{S^*,S} = \int_{-\infty}^{\infty} (1 + x_1^2)^{(n-1)} w_1^{-2} \cdots w_n^{-2} \varphi(x_1, \ldots, x_1) \, dx_1
\]
(36)
Thus,
\[
\left| (w_1^{-2} \cdots w_n^{-2} U, \varphi)_{S^*,S} \right| \leq \|\varphi\|_{\infty} \int_{-\infty}^{\infty} \frac{dx_1}{(1 + x_1^2)}
\]
(37)

19
Estimate (37) shows that $U \in w^2_1...w^2_n D'_{L1}$. On the other hand, if we consider the sequence $\{\beta_j\}$ introduced in b), we have that $\beta_j \to 1$ in B_c but

$$(w^{-(n+1)}U, \beta_j)_{S',S} = (U, w^{-(n+1)}\beta_j)_{S',S} =$$

$$\int_{-\infty}^{\infty} (1 + x^2_1)^{n-1} (1 + nx_1^2)^{\frac{n-1}{2}} \beta^n (x_1/j) \, dx_1 \geq$$

$$n^{\frac{n-1}{2}} \int_1^j (1 + x^2_1)^{\frac{n-3}{2}} \, dx_1 \quad (38)$$

The integral in (38) goes to ∞ as $j \to \infty$. Thus, $U \notin w^{-n-1}D'_{L1}$, showing that d) holds. This completes the proof of Proposition 13. □

We will now obtain a characterization of the space $w^2_1...w^2_n D'_{L1}$, by means of a representation very much in the spirit of the one obtained in Proposition 9.

Proposition 14 Given $T \in S'$, the following statements are equivalent:

i) $T \in w^2_1...w^2_n D'_{L1}$.

ii) $T = T_0 + \sum x^2_{i_1}...x^2_{i_k} T_{i_1, \ldots, i_k}$, where $T_0 \in E'$, $T_{i_1, \ldots, i_k} \in D'_{L1}$, and the sum is taken over all the different k-tuples (i_1, \ldots, i_k), with $1 \leq i_1 < \ldots < i_k \leq n$, $1 \leq k \leq n$.

Proof. The proof of the implication ii)\Rightarrowi) is straightforward and we will omit it.

For the converse, we consider a one-dimensional θ so that $\theta \in C^\infty_0 (\mathbb{R})$, $0 < \theta \leq 1$, $\theta (x) = 1$ for $|x| < 1$ and $\theta (x) = 0$ for $|x| > 2$. If we denote $\theta_j = \theta(x_j)$, we have

$$1 = (\theta_1 + (1 - \theta_1)) \ldots (\theta_n + (1 - \theta_n)) =$$

$$= \theta_1 \ldots \theta_n + \sum (1 - \theta_{i_1}) \ldots (1 - \theta_{i_k}) \theta_{j_1} \ldots \theta_{j_{n-k}}$$

where it is understood that the sum in the second term collects all the possible cross-products containing at least one factor of the form $(1 - \theta_{i_i})$, without repetition. Thus, we can write

$$T = \theta_1 \ldots \theta_n T_0 + \sum x^2_{i_1}...x^2_{i_k} \frac{1 - \theta_{i_1}}{x^2_{i_1}} \ldots \frac{1 - \theta_{i_k}}{x^2_{i_k}} w^2_{1}...w^2_{n} \theta_{j_1} \ldots \theta_{j_{n-k}} \left(w^2_{1} \right)^{-1} \ldots \left(w^2_{n} \right)^{-1} T_0.$$

(40)
We observe that the distribution $\theta_1...\theta_nT$ belongs to E'. Moreover, the functions $w_{j_1}^2...w_{j_{n-k}}^2\theta_{j_1}...\theta_{j_{n-k}}$, and $\frac{1-\theta_{j_1}}{x_{i_1}}...\frac{1-\theta_{i_k}}{x_{i_k}}w_{i_1}^2...w_{i_k}^2$ belong to B. Thus, the representation stated in ii) holds. This concludes the proof of Proposition 14.

Now, we are ready to characterize those tempered distributions that are S'-convolvable with the kernel $P(y)$ for each $(y) > 0$.

Theorem 15 Given $T \in S'$, the following statements are equivalent:

i) $T \in w_1^2...w_n^2D'_{L,1}$.

ii) T is S'-convolvable with $P(y)$, for each $(y) > 0$.

Proof. To prove that i)\impliesii), we need to show that $T(P(y) \ast \varphi) \in D'_{L,1}$ for each $\varphi \in S$, $(y) > 0$. For this purpose it suffices to prove that the function $(1 + x_1^2) ...(1 + x_n^2)(P(y) \ast \varphi)$ belongs to B, which can be done pretty much repeating the steps followed in the proof of estimate (29).

We will now prove that ii)\impliesi). If we fix a distribution $T \in S'$ so that $T(P(y) \ast \varphi)$ belongs to $D'_{L,1}$ for each $(y) > 0$, we will show that T can be written as indicated in Proposition 14, by selecting an appropriate function φ. We first observe that if φ is of the form $\varphi_1(x_1)...\varphi_n(x_n)$, $\varphi_j \in S(\mathbb{R})$, then

$$P(y) \ast \varphi = \prod_{i=1}^{n}P_{y_i} \ast \varphi_i. \quad (41)$$

We will use in the sequel functions $\varphi \in S$ of that form.

We can write as in Proposition 14,

$$T = \theta_1...\theta_nT + \sum (1 - \theta_{i_1})...(1 - \theta_{i_k})\theta_{j_1}...\theta_{j_{n-k}}T.$$

The distribution $\theta_1...\theta_nT$ has compact support, so, it belongs to $D'_{L,1}$. On the other hand, we can also write formally,

$$(1 - \theta_{i_1})...(1 - \theta_{i_k})\theta_{j_1}...\theta_{j_{n-k}}T =$$

$$x_{i_1}^2...x_{i_k}^2(1 - \theta_{i_1})...(1 - \theta_{i_k})P_{y_1} \ast \alpha_{i_1}...x_{j_1}^2(P_{y_{j_1}} \ast \alpha_{j_1})...(1 - \theta_{j_{n-k}})P_{y_{j_{n-k}}} \ast \alpha_{j_{n-k}}T(P(y) \ast \varphi) \quad (42)$$
where \(\alpha_l = \alpha(x_l) \), \(\varphi = \alpha_1...\alpha_n \), and \(\alpha \) is a function to be chosen later.

Using the one-dimensional version of (32) we can conclude that for an appropriate \(\alpha \in C_0^\infty(\mathbb{R}) \), \(\alpha = 0 \) for \(|x| \geq 1/3 \), \(\alpha > 0 \) for \(|x| < 1/3 \), we have

\[
(P_{y_i} \ast \alpha)(x_i) \geq C \frac{y_i}{x_i^2 + y_i^2} \| \alpha \|_1
\]

for \(|x_i| > 1/3 \).

Moreover, we can also obtain an estimate from below for the convolution

\[
(P_{y_i} \ast \alpha)(x_i) = \frac{1}{\pi y_i} \int_{-1/3}^{1/3} \frac{\alpha(t)}{1 + (x_i - t)^2 / y_i^2} dt
\]

for \(|x_i| < 1 \). In fact,

\[
1 + (x_i - t)^2 / y_i^2 \leq \frac{16}{9} \left(1 + 1/y_i^2 \right)
\]

for \(|x_i| < 1 \), \(|t| < 1/3 \), \(y_i > 0 \). So,

\[
(P_{y_i} \ast \alpha)(x_i) \geq \frac{9}{16} \frac{y_i}{1 + y_i^2} \| \alpha \|_1
\]

for \(|x_i| < 1 \), \(y_i > 0 \).

According to (43), (46), and (28), each of the ratios in (42) belong to \(B \).

By hypothesis, \(T(P_{y} \ast \varphi) \) belongs to \(D_{L^1} \). Thus, we have showed that the distribution \(T \) can be represented as in Proposition 14. This completes the proof of Theorem 15.

6 Applications to Harmonic Extensions of Integrable Distributions

In previous sections we have studied the \(S' \)-convolution of tempered distributions with appropriate Poisson kernels and we have characterized those tempered distributions that are \(S' \)-convolvable with the Euclidean version and the product domain version of the Poisson kernel. We also observed that in each case, the \(S' \)-convolution defined a function with appropriate harmonicity properties in the relevant domain. The purpose of this last section is to present some results about the boundary values of these functions.

Before stating the first result, let us recall that \(D_{L^1} \) ([14], p. 199) denotes the space of \(C^\infty \) functions such that the functions and its derivatives of all orders are integrable on \(\mathbb{R}^n \).
Proposition 16 Given $T \in D'_{L^1}$, the S'-convolution $T * P_y$ converges to T in D'_{L^1} as $y \to 0^+$.

Proof. According to Proposition 7, given $T \in D'_{L^1}$, the S'-convolution of T and P_y coincides with the regularization

$$(T_x, P_y (x-t))_{D'_{L^1}, B}$$

as considered by L. Schwartz in [14] in several different settings. On the other hand, according to [14], p. 204, given $2D_{L^1}$, the map

$$T \mapsto (T_x, \theta (x-t))_{D'_{L^1}, B}$$

is linear and continuous from D_{L^1} into D_{L^1}. Moreover, if $\{\theta_a\}_{a \in A}$ is a net that converges to the distribution δ in D'_{L^1}, then the regularization $(T_x, \theta_a (x-t))_{D'_{L^1}, B}$ converges to T in D'_{L^1}. So, to prove that $(T_x, P_y (x-t))_{D'_{L^1}, B}$ converges to T in D'_{L^1} as $y \to 0^+$, it suffices to show that P_y converges to δ in D'_{L^1} as $y \to 0^+$.

As we know, D'_{L^1} is the dual of the space B, which is a Fréchet space with respect to the family of seminorms $\{s_m\}_{m=0}^\infty$ given by

$$s_m (\varphi) = \sup_{0 \leq |\alpha| \leq m} \| \partial^\alpha \varphi \|_\infty$$

We consider in D'_{L^1} the strong dual topology. In this topology, convergence means uniform convergence over each of the bounded subsets of B. Let us recall that a subset B of B is bounded if for each $m = 0, 1, \ldots$ we have

$$\sup_{\varphi \in B} s_m (\varphi) < \infty$$

We will now prove that P_y converges to δ in D'_{L^1} as $y \to 0^+$. In fact, given $B \subset B$ bounded and given $\varphi \in B$, we have

$$\left| (P_y, \varphi)_{D'_{L^1}, B} - \varphi (0) \right| = \left| \int_{\mathbb{R}^n} \left(\varphi (yu) - \varphi (0) \right) P (u) \, du \right|.$$

(47)

For a fixed $M > 0$, we can estimate this last integral as

$$\int_{|u| > M} |\varphi (yu) - \varphi (0)| P (u) \, du + \int_{|u| < M} |\varphi (yu) - \varphi (0)| P (u) \, du = I_M + J_M$$

(48)
We have
\[I_M \leq 2s_0(\varphi) \int_{|u|>M} P(u) \, du \quad (49) \]

Since the function \(\varphi \) belongs to a bounded subset \(\mathcal{B} \) of \(\hat{\mathcal{B}} \) and \(P \) is an integrable function, given \(\varepsilon > 0 \) there exists \(M_\varepsilon > 0 \) so that
\[\sup_{\varphi \in \mathcal{B}} I_{M_\varepsilon} < \varepsilon \quad (50) \]

To estimate \(J_{M_\varepsilon} \), we write
\[\varphi(yu) - \varphi(0) = \int_0^1 (\nabla \varphi)(tyu) \cdot yu \, dt \quad (51) \]

Thus, for \(|u| < M_\varepsilon \) we have
\[|\varphi(yu) - \varphi(0)| \leq ns_1(\varphi) y M_\varepsilon \quad (52) \]

Or,
\[J_{M_\varepsilon} \leq ns_1(\varphi) y M_\varepsilon \quad (53) \]

Thus, we can say that there exists \(\delta_\varepsilon > 0 \) so that for \(0 < y < \delta_\varepsilon \) we have
\[\sup_{\varphi \in \mathcal{B}} J_{M_\varepsilon} < \varepsilon \quad (54) \]

From (50) and (54), we conclude that \(P_y \) converges to \(\delta \) in \(D'_{L^1} \), as \(y \to 0^+ \).

This completes the proof of Proposition 16.

This result states that every integrable distribution on \(\mathbb{R}^n \) has a harmonic extension to the upper-half space \(\mathbb{R}^{n+1}_+ \), extending the classical result of S. Bochner ([3], [4]) for integrable functions. It also extends a result of H. Bremermann for distributions with compact support in \(\mathbb{R} \) ([5], p. 49).

E. Stein and G. Weiss ([18]) have obtained an extension of Bochner’s result to the space \(\mathcal{M} \) of finite signed Borel measures in \(\mathbb{R}^n \), with almost everywhere convergence at the boundary. Proposition 16 includes a version of this extension with convergence to the measure at the boundary, in the sense of the strong dual topology of \(D'_{L^1} \). In fact, every finite signed Borel measure defines an integrable distribution. This assertion follows from the observation that \(\mathcal{M} \) is the dual of the space \(C_0 \) of continuous functions on \(\mathbb{R}^n \) that vanish at \(\infty \), equipped with the supremum norm. So the map
\[\varphi \rightarrow (\mu, \varphi)_{\mathcal{M}, C_0^\infty} = \int_{\mathbb{R}^n} \varphi(x) d\mu(x) \]
is continuous on C_0^∞ with the topology of B because of the estimate

$$|\langle \mu, \varphi \rangle_{M, C_0^\infty}| \leq \|\mu\| \|\varphi\|_{\infty}$$

where $\|\mu\|$ denotes the total variation of the measure μ.

Let us point out that the harmonic extension obtained in Proposition 16 is not unique. Indeed, if we add to $(T_x, P_y(x - t))_{D'_{L,1}}$ any harmonic function on \mathbb{R}^{n+1}_+ that is zero for $y = 0$, then the resulting harmonic function is still an extension to the upper-half space of the distribution T. Of course, what we are observing is that the Dirichlet problem on an unbounded domain does not have a unique solution.

We now move on to the product domain case. Before stating the corresponding boundary value result, we remark that the notation $(y) \to (0)^+$ means that $y_j \to 0^+$ for each $j = 1, 2, ..., n$.

Proposition 17 Given $T \in D'_{L,1}$, the S'-convolution $T * P(y)$ converges to T in $D'_{L,1}$ as $(y) \to (0)^+$.

Proof. According to Proposition 7, given $T \in D'_{L,1}$, the S'-convolution of T and $P(y)$ coincides with the regularization

$$(T_x, P(y)(x - t))_{D'_{L,1}}.$$

Thus, it suffices to show that $P(y)$ converges to δ in $D'_{L,1}$ as $(y) \to (0)^+$. With the same notation as in Proposition 16, we can write

$$\left| (P(y), \varphi)_{D'_{L,1}, B} - \varphi(0) \right| = \left| \int_{\mathbb{R}^n} (\varphi(y_1 u_1, ..., y_n u_n) - \varphi(0)) P(u_1) ... P(u_n) du_1 ... du_n \right|$$

$$= \int_{|u| > M} + \int_{|u| < M} .$$

The integral $\int_{|u| > M}$ can be estimated in the same way as in Proposition 16.
To estimate the integral $\int_{|w|<M}$, it is enough to notice that we can write

$$\varphi(y_1u_1, ..., y_nu_n) - \varphi(0, 0, 0) = \varphi(y_1u_1, ..., y_nu_n) - \varphi(0, y_2u_2, ..., y_nu_n)$$

$$+ \varphi(0, y_2u_2, ..., y_nu_n) - \varphi(0, 0, y_3u_3, ..., y_nu_n)$$

$$+ ... + \varphi(0, ..., 0, y_nu_n) - \varphi(0, ..., 0)$$

$$= \int_0^1 \frac{\partial \varphi}{\partial x_1}(t_1y_1u_1, y_2u_2, ..., y_nu_n) y_1u_1 dt_1$$

$$+ \int_0^1 \frac{\partial \varphi}{\partial x_2}(0, t_2y_2u_2, y_3u_3, ..., y_nu_n) y_2u_2 dt_2$$

$$+ ... + \int_0^1 \frac{\partial \varphi}{\partial x_n}(0, ..., 0, t_ny_nu_n) y_nu_n dt_n$$

Thus, for M_ε as in Proposition 16 we can write

$$|\varphi(y_1u_1, ..., y_nu_n) - \varphi(0, 0, 0)| \leq n \sigma_1(\varphi) M_\varepsilon \max_j y_j$$

and the rest of the proof proceeds in the same way.

This completes the proof of Proposition 17. ■

Proposition 17 has been obtained by H. Bremermann with a different proof. In fact, the space denoted by Bremermann as O_0 is the space B_c and so the space O'_0 is the space D'_{L_1} of integrable distributions.

References

