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1 The Model. In this paper we deal with the standard model for a discrete
CMC specified by a four tuple (X, A, P, C), where X, the state space, is a count-
able or finite set; A, the action space, is a finite set; P is a transition probability
kernel from K := X × A to X and C : K → [0, K], K > 0, is the cost per stage
function, see [1, 8, 10]. Sometimes, we will establish the probability kernel by
means of a set of matrices {P (a) : a ∈ A}, so that P (y | x, a) := Pxy(a).

The controlled Markov chain {Xn} is determined in the following way. At
each time t ∈ {0, 1, . . .} the state of the system is observed, say Xt = x ∈ X,
and an action a0 ∈ A is chosen. Then a cost C(x, a) is incurred and, regardless
of the previous states and actions, the state of the system at time t + 1 will be
Xt+1 = y ∈ X with probability P (y | x, a).

We will restrict attention to stationary deterministic policies, that is, rules
for prescribing how to choose actions by means of a decision function f : X → A.
Such a policy will be denoted by f∞, meaning that action f(x) is chosen if
the system is in state x regardless of time the observation is made. Following
standard notation, we will denote by P f and Ef respectively the probability
measure and the expectation operator induced by the policy f∞ on the canonical
product space (X∞,B∞).

The performance index for CMCs discussed here is the so called exponential

average cost (EAC), which is the (exponential utility) risk-sensitive version of
the well known (risk-neutral) average cost (see e.g. [2, 4, 5, 6],). The EAC
corresponding to a policy f∞ is defined as

Jf (γ, x) := lim sup
n→∞

1

n

1

γ
log Ef

x [exp(γSn)] ,

where Sn :=
∑n−1

t=0 C(Xt, At), and the optimal exponential average cost (OEAC)
by

J∗(γ, x) := inf
f

Jf (γ, x),

where the infimum above is taken over the class of all stationary deterministic
policies.

A standard approach to the problem of finding optimal policies for CMCs
with average cost is based on the existence of solutions to an average optimality
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equation or an average optimality inequality, see e.g. . Recently, an optimality
inequality result (Theorem 4.1, [7]) was presented for the risk-neutral case,
purpotedly trying to emulate what have been done previously for the risk-neutral
case. The mentioned result proves the existence of solutions to an optimality
inequality under (a) a stability condition and (b) a limiting condition on the cost
structure. We state below the mentioned result and assumptions respectively
as Theorem 1 and Assumption A for ease of reference.

Assumption A (a) There exists a stationary policy f∞ such that

ρ = Jf (γ, x) (1)

is finite and independent of x ∈ X.
(b)

lim inf
x→∞

min
a∈A

C(x, a) > ρ. (2)

Theorem 1. Under Assumption A, there exists a number ρ∗ and a (possibly
extended) function W on X such that for all x ∈ X

eγ(ρ∗+W (x))
> inf

a∈A

{

eγC(x,a)
∑

y

eγW (y)P (y | x, a)
}

(3)

and the set H := {x ∈ X : W (x) is finite} is not empty. Moreover, there exists
an optimal stationary deterministic policy f∞ whenever the initial state is in
H , and ρ∗ = Jf (γ, x) for all x ∈ H .

Herein, we present three examples which highlights (a) the significant dif-
ferences between the risk-neutral and the risk-sensitive criteria, and (b) the
strength and weaknesses of the result in [7].

For the computation of some of the EAC’s arising in the examples, we will
use the following theorem, see [3].

Theorem 2. If P =
(

P (x, y)
)

is the transition probability matrix of a cost
Markov chain Xn then

J(γ, x) := lim sup
n→∞

1

n

1

γ
log Ex [exp(γSn)]

=
1

γ
max

{

log λ(P̃C) : x → C
}

,

where Sn := 1
n

∑n−1
j=0 c(Xj), c is the cost function, C denotes a maximal self-

communicating class of states,

P̃C :=
(

P (x, y)eγc(x)
)

x,y∈C

is the disutility matriz corresponding to P , and finally, λ(P̃C) denotes the spec-
tral radius of P̃C .
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We begin with an elementary (“multichain”) example which focus attention
on the stability condition in Assumption A(a). The example is related to the
following general, yet simple observation. When the cost function is bounded,
say C(x, a) 6 K ∀ (x, a) ∈ K, any couple (ρ∗, W ) such that ρ∗ > K and
W (·) ≡ K is a solution of (3). Indeed,

eγC(x,a)
∑

y

eγW (y)P (y | x, a) 6 eγKeγK
6 eγ(ρ∗+W (x)).

For those solutions, H := {x ∈ X : W (x) is finite} = X; however, ρ∗ > J∗(γ, x)
∀x ∈ X, and consequently the minimizing actions in the right side of (3) have
nothing to do with the optimal EAC. Thus, those trivial solutions are generally
useless for the main purpose of the optimality inequality, namely, searching for
optimal policies. Example 1 below further illustrates this limitation of Theorem
1 , and it does it with a value of ρ∗ less than sup C(x, a).

Example 1. Consider the CMC with state space S := {1, 2, 3}, action space
A = {a, b}, transition probabilities given by the matrices

P (a) :=





0 1 0
0 0 1
0 0 1



 and P (b) :=





1 0 0
0 0 1
0 0 1



 ,

and cost function C defined by C(1, a) = C(1, b) = L, C(2, a) = C(2, b) := M ,
and C(3, a) = C(3, b) = U with 0 < L < U < M .

Decision functions for this CMC are determined by specifying their value on
state 1 because both the transition probabilities and the costs at states 2 and 3
do not depend on the action. Thus, let d and e denote decision functions such
that d(1) = a and e(1) = b. It is immediate that

Jd(γ, 1) = Jd(γ, 2) = Jd(γ, 3) = U and Je(γ, x) =

{

U if x = 2, 3

L if x = 1
,

so that e∞ is optimal, i.e., J∗ = Je. Also, Assumption A(a) is verified since
Jd(γ, x) is independent of the state x.

We can check that if we take ρ∗, with U < ρ∗ < M and the function W

such that ∞ > W (1) > W (2) > W (3) and W (2) − W (3) > M − ρ∗, then
(ρ∗, W ) is a solution of (3) and H := {W (x) < ∞} = S. However J∗(γ, x) 6= ρ∗

∀x. Moreover, the action that minimizes the right-hand side of (3) for state
1 is a and e(1) = b 6= a. Summarizing, the described solution of (3) does not
satisfy the conclusion of Theorem 1, i.e., it does not provide the optimal decision
function on H .

The next two examples will address another limitation of Theorem 1. They
both consist of a CMC with state space X = {1, 2, . . .} for which the optimal
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EAC has an infinite number of different values. Thus, they illustrate the fact
that the optimal average inequality in Theorem 1 may not provide the optimal
decision function in most of the state space. Morevoer, the CMC in Example
3 has a strong recurrence structure, namely, it satisfies a simultaneous Doeblin
condition.

Example 2. Consider first the CMC with state space S := {1, 2}, action
space A = {a, b}, transition probabilities given by the matrices

P (a) :=

(

1 0
1 0

)

and P (b) :=

(

1 0
0 1

)

and cost function determined by C(1, a) = C(1, b) := M and C(2, a) = C(2, b) :=
L, with 0 < L < M .

Decision functions for this CMC are determined by specifying their value on
state 2 because both the transition probabilities and the costs at state 1 do not
depend on the action. Thus, let d and e denote decision functions such that
d(2) = a and e(2) = b. It is immediate that

Jd(γ, 1) = Jd(γ, 2) = M and Je(γ, x) =

{

M if x = 1

L if x = 2
,

so that e∞ is optimal. Also, Assumption A(a) is verified since Jd(γ, x) is inde-
pendent of the state x and Assumption A(b) is trivially satisfied. However, the
optimal value function depends on the state space and thus the optimal decision
function can not be obtained from (3).

Based on the previous finite structure, now we construct a CMC with state
space X, as the model in [7], for which difficulties similar to those in the above
finite model appears, for an infinite number of states.

Let us extend the previous finite model by appending the “tail” {3, 4, . . .}
and defining P (2 | x, a) = P (2 | x, b) = px, P (x | x, a) = P (x | x, b) = 1 − px

with 0 < px < 1, and C(x, a) = C(x, b) = R > M ∀x > 3. In that way, Part
(b) of Assumption A in Theorem 1 is satisfied:

lim inf
x→∞

min
a∈A

C(x, a) = R > M = Jd(γ, x).

Moreover, the values of px can be chosen so that L < R + 1
γ

log px < M

because L < M < R and

lim
γ→+∞

R +
1

γ
log px = R and lim

γ→0
R +

1

γ
log px = −∞, (4)

and, by Theorem 2, we have now

J d̄(γ, x) = M ∀x and J ē(γ, x) =











M if x = 1

L if x = 2

R + 1
γ

log px if x > 3

,
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where d̄ and ē are the obvious extensions of d and 3 respectively. Consequently,
ē∞ is optimal. Therefore as in the finite model, (3) provides the optimal decision
function only in one out of an infinite number of states. One might conjecture
that the observed behaviour is caused by the weak recurrence structure of the
CMC in the example . Nevertheless, as Example 3 below will show, even if we
add a Doeblin Condition to Assumption A of Theorem 4.1 in [7], the result will
still show the observed fragility.

Example 3. Similar to what we did in Example 2, the present example will
be based on the following basic scheme provided by a CMC with state space
S := {1, 2}, action space A := {a, b} and transition probabilities given by

P (a) :=

(

1 0
1 − p2 p2

)

and P (b) :=

(

p1 1 − p1

1 − p2 p2

)

, (5)

where 0 < p1 < 1, 0 < p2 < 1. The cost structure for this CMC will be defined
by C(1, a) = C(1, b) := L and C(2, a) = C(2, b) := M , where 0 < L < M .

Again, decision functions for this CMC are determined by specifying their
value on state 1 because both the transition probabilities and the costs at state
2 do not depend on the action. Consequently, let us just consider decision
functions d and e such that d(1) = a and e(1) = b. According to Theorem 2,
the EAC’s for the corresponding stationary deterministic policies d∞ and e∞

are, respectively,

Jd(γ, 1) = L, Jd(γ, 2) = max

{

L, M +
1

γ
log

1

2

}

(6)

and

Je(γ, 1) = Je(γ, 2) =
1

γ
log λ(P̃e), (7)

where λ(P̃e) is the spectral radius (see [9] of the disutility matrix

P̃e :=

(

p1 eγL (1 − p1) eγL

(1 − p2)e
γM p2 eγM

)

. (8)

We have then

L <
1

γ
log λ(P̃e) < M and M +

1

γ
log p2 <

1

γ
log λ(P̃e) < M. (9)

The inequalities on the right above can be checked directly by carrying out the
computation of λ(P̃e) in terms of the entries of P̃e or by appealing to a Perron-
Frobenius theory argument as follows. If v is the Perron-Frobenius vector of
P̃e and we set B := (Bij), the 2 × 2 matrix with B22 = p2e

γM and Bij = 0
otherwise, then we have

λ(P̃e) v = P̃e v > B v,
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because v > 0. The fact that v > 0 allows us as well to use a simple result from
P-F theory (Corollary 8.1.29, [9]) to conclude that λ(P̃e) > λ(B) = p2e

γM . The
inqualities on the left can be obtained with a similar argument.

Let us now “extend the previous CMC the state space X = {1, 2, . . .}. In
this case, let us define the transition probabilities for x = 3, 4, . . . as

P (x | x, a) = P (x | x, b) = px, P (1 | x, a) = P (1 | x, b) = 1 − px,

where 0 < px < 1, and extend the cost function by defining C(x, a) := M for
those states.

As before, it is sufficient to consider two stationary deterministic policies for
this CMC, namely, those respectively determined by the decision functions

g(x) =

{

b if x = 1,

a elsewhere
and h(x) = a ∀ x.

Now, take px, x = 3, 4, . . . in the interval (0, p2) and such that L < M +
1
γ

log px. That choice is possible because limp→0 M + 1
γ

log p = −∞. Then,

taking into account that px < p2, x = 3, 4, . . . and the second inequality in (9)
we have

L < M +
1

γ
log px < M +

1

γ
log p2 <

1

γ
log λ(P̃e) < M, (10)

where P̃e is matrix (8).
Thus, noting that {1, 2} is a closed class under both policies g∞ and h∞, it

follows from Theorem 2 that Jg(γ, x) = 1
γ

log λ(P̃e) ∀x and

Jh(γ, x) =

{

L if x = 1

M + 1
γ

log px elsewhere.
(11)

Policy h∞ is then optimal and the optimal EAC depends on initial state.
Moreover, for fixed γ, the px’s can be chosen to be different for different x’s.
Consequently, also for this example the optimality inequality gives the optimal
EAC only in one out of an infinite number of states.

It must be noted that, as announced earlier, the CMC in this example sat-
isfies a simultaneous Doeblin Condition. Indeed, if we set

τ1 := inf {n > 0 : Xn = 1},

then

Ef
x [τ1] = Eg

x[τ1] = (1 − px)

∞
∑

n=1

npn−1
x <

∞
∑

n=1

npn−1
2 < ∞,

for x > 2, Eh
1 [τ1] = 1, and

E
g
1 [τ1] = p1 + (1 − p1)(1 − p2)

∞
∑

n=1

npn−1
2 < ∞.

6



As announced, the previous example illustrates that even adding a simul-
taneous Doeblin condition, the stability condition used in [7] the CMC ex-
hibits (perhaps undesirable) pathologies not found in the better understood
risk-neutral model.
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