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Abstract

Using the value iteration procedure for discrete-time Markov con-
trol processes on general Borel spaces we study a scheme of approxi-
mation of average cost optimal policies by solving a sequence of finite
horizon optimization problems. In order to work with unbonded costs
and to provide the geometric rate of convergence we propose the gener-
alization of a well-known ergodicity condition and of use the technique
of weighted norms in spaces of functions and signed measures. Appli-
cations of the approximation found could be construction of adaptive
policies for Markov control processes with unbounded cost.
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1 INTRODUCTION

In the theory of discrete-time average cost Markov control processes (MCPs
for short) with bounded cost one of a current ergodicity assumption is the
following (see Arapostathis, et al (1993)):
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‖p(· |x, a) − p(·|x′, a′)‖τ ≤ 2β, (1)

for all states x, x′ ∈ X, and actions a ∈ A(x), a′ ∈ A(x′), where β < 1, ‖·‖τ

denotes the total variation norm, and p is the transition kernel of the MCPs
considered. In this paper we generalize (1) to MCPs with unbounded costs
to prove the existence of infinite horizon average cost optimal policies, and
to show that these policies can be approximated by solving a sequence of
n-stage optimization problems. Our main goal is to establish the geometric
rate of convergence for such approximation and to obtain the similar rate of
convergence in the value iteration procedure. Specifically, the Average Cost
optimality Equation (ACOE) together with the value iteration procedure
is used to approximate the solution of ACOE by means of solutions of the
optimality equations for n-stage optimization problems.

The same problem for MCPs with bounded costs was studied in Hernández-
Lerma (1989), and the geometric convergence in the uniform norm was ob-
tained, both for value iteration and for approximation of optimal policies. For
MCPs with finite state and action spaces the geometric convergence in the
value iteration procedure was shown in Federgruen and Schweitzer (1980),
Schweitzer and Federgruen (1979), and White (1963).

The value iteration (VI) scheme for MCPs has been studied intensively
for the last twenty years. Most of contributions were made for processes
with bounded costs. For unbounded cost functions the convergence of VI
was investigated, for example, in Cavazos-Cadena (1996), Gordienko and
Hernández-Lerma (1995b), Hernández-Lerma (1995), Hordijk, Schweitzer
and Tijms (1975), Montes-de-Oca and Hernández-Lerma (1996), Sennott
(1991), Spieksma (1990).

To obtain a finite horizon approximation of average cost optimal policies
we derive the exponential estimation of the rate of convergence of VI with re-
spect to the weighted norm in a suitable space of unbounded functions. The
convergence in VI closely relates to the geometric convergence of distributions
of a process with respect to the total variation norm in the space of signed
measures. For discrete-time Markov processes (non-controlled) this type of
convergence was studied, for example, in Kartashov (1985) and Meyn and
Tweedie (1993) using Lyapunov-like ergodicity conditions. Bounds of rate
of convergence of VI allows us to prove the geometric convergence in a op-
timal policy approximation procedure. Constants in the bounds found are
calculated in terms of quantities involved in assumption 3 in Section 3.
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In Section 2 we present the class of Markov Control Processes we are
interested in. In Section 3 we list the assumptions which we use to obtain
desired results. Preliminaries are formulated and proved in Section 4. Main
results are given in Section 5. Remarks and an example of a control system
that satisfies all our assumptions are given in Section 6.

2 CONTROL MODEL

A discrete-time Markov control model (X, A, A(x), p, c) consists of a state
space X, a control (or action) space A, sets A(x) of admissible actions in the
state x ∈ X, transition law p, and one-stage cost c, satisfying the following.
Both X and A are Borel spaces (i.e. some measurable subsets of complete
and separable metric spaces). Here and in what follows measurability refer
to measurability with respect to a corresponding Borel σ-algebra, denoted by
B. For each x ∈ X the set A(x) is supposed to be nonempty and compact,
and the set

K := {(x, a)|x ∈ X, a ∈ A(x)},

of admissible state-action pairs is assumed to be a measurable subset of X×A.
Transition law p(B|x, a), where B ∈ B(X) and (x, a) ∈ K, is a stochastic
kernel on X given K. Finally, the one-stage cost c(x,a) is a nonnegative
measurable function on K (possibly unbounded).

Denote by xt ∈ X and at ∈ A(X), respectively, the states of the process
and the actions chosen at the moments t = 0, 1, 2, ..., and define the spaces
of admissible histories up to time t ≥ 1 by setting Ht : Kt−1×X. An element
of Ht is a vector, or history, ht = (x0, a0, ..., at−1, xt) where (xs, as) ∈ K for
s = 0, 1, ..., t − 1.

A control policy is a sequence π = {πt} such that for each t = 0, 1, ...,
πt is a stochastic kernel on A given Ht, and which satisfies the constraint
πt(A(xt)|ht) = 1 for all ht ∈ Ht. The set of all control policies is denoted by
Π

A control policy π = {πt}is said to be stationary policy if there exists a
measurable function f : X → A with graph(f) ⊂ K such that the measure
πt(.|ht) is concentrated at the point f(xt) for every t = 0, 1, .... We will iden-
tify a stationary policy with corresponding function f , and use the notation:
f ∈ Πs, where Πs ⊂ Π is the class of all stationary policies. The stationary
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policy f uses the action at = f(xt) if the process is in the state xt at stage
t.

For each policy π ∈ Π and initial state x ∈ X a probability measure
P π

x is defined on the space Ω := (X × A)∞ in a canonical way. (See, e.g.
Dynkin and Yushkevich (1979) or Hinderer (1970)). We will denote by Eπ

x

the corresponding expectation operator.
For π ∈ Π, x ∈ X, and n = 1, 2..., set:

Jn(x, π) := Eπ
x

∑n−1
t=0 c(xt, at), (2)

J(x, π) := lim sup
n−→∞

Jn(x, π)/n. (3)

Then Jn(x, π) and J(x, π) are, respectively, the expected n−stage cost
and the average expected cost (over infinite horizon) when the policy π is
used given the initial state x.

The stationary policy f∗ ∈ Πs is said to be average cost optimal, if

J(x, f∗) = inf
Π

J(x, π) for all x ∈ X. (4)

In the rest of the paper we will be concerned with the approximation of
the policy f∗ as in (4) by solving optimization problems involving n-stage
costs Jn(x, π), n = 1, 2, ...

3 ASSUMPTIONS

For a given measurable function v : X → [v,∞) (v > 0) let L∞
v denote the

normed linear space of all measurable functions u : X → < with

‖u‖v := sup
x∈X

|u(x)| /v(x) < ∞.

We define the weighted total variation norm of a signed measure µ on
B(X) as follows (see Kartashov (1985):

‖µ‖v :=

∫

X

v(x) |µ| (dx), (5)

where |µ| denotes the variation of the measure µ . The space of all signed
measures on B(X) with ‖µ‖v < ∞ is denoted by Mv.
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Assumption 1. (a) The one-stage cost c is a measurable nonnegative real-
valued function on K with the property that a → c(x, a) is l.s.c. (lower
semicontinuous) on A(x) for every x ∈ X

(b) supA(x) c(x, a) ≤ v(x), x ∈ X.
(c) For each u ∈ L∞

v the set

{

(x, a) ∈ K|

∫

X

u(y)p(dy|x, a) ≤ r

}

is Borel in K for every r ∈ <; and the function

a →

∫

X

u(y)p(dy|x, a),

is l.s.c for every x ∈ X. (This function takes finite values due to Assumption
3(b) below).

Assumption 2. For every stationary policy f the (state) Markov pro-
cess with the transition probability p(·|x, f(x)) possesses an unique invariant
probability µf .

Assumption 3. (a) There is a number β < 1 such that

‖p(·|x, a) − p(·|x,, a,)‖v ≤ β [v(x) + v(x,)] , (6)

for each x, x, ∈ X, a ∈ A(x), a, ∈ A(x,).
(b) There are x∗ ∈ X, a∗ ∈ A(x∗) such that

‖p(·|x∗, a∗)‖v < ∞. (7)

Remark 1 For non-controlled Markov processes the hypothesis of type (6)
was introduced in Kartashov (1985).

An example of controlled autoregression process will be given in Section
6 for which all above assumptions hold.
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4 PRELIMINARIES

The convergence of the approximation procedure of average optimal policies
proved in Section 5 depends essentially on behavior of value functions vn for
finite horizon costs and on ergodicity properties of processes when stationary
policies are applied.

For each n = 1, 2... and initial state x ∈ X we define the value function
vn(x) for n-stage optimization problem as follows:

vn(x) := inf
π∈Π

Jn(x, π), x ∈ X, (8)

where the expected n-stage cost Jn(x, π) was given in (2).
The following simple lemma is used to specify the properties of finite

horizon value functions vn. The proof is a combination of the inequalities (6)
and (7).

In what follows we will write
∫

instead of
∫

X
.

Lemma 2 Assumption 3 implies the following inequality:

sup
f∈Πs

∫

v(y)p(dy|x, f(x)) ≤ β[v(x) + v(x∗)] + ‖p(·|x∗, a∗)‖v . (9)

Corollary 3 Under Assumptions 1 and 3 for each x ∈ X we have:

sup
a∈A(x)

∫

v(y)p(dy|x, a) ≤ β[v(x) + v(x∗)] + ‖p(·|x∗, a∗)‖v . (10)

The last inequality is due to the fact that for each x ∈ X, a ∈ A(x) there
is stationary policy f with f(x) = a which, in turn, is a consequence of
Example 2.6 in Rieder (1978).

Lemma 4 below shows that the functions vn, n = 1, 2, ... are well-defined,
belong to the space L∞

v , and furthermore, they could be calculated recur-
sively.

Lemma 4 Suppose that Assumptions 1,2, and 3 hold. Then for each n ≥
1, vn ∈ L∞

v , and

vn(χ) = min
A(x)

[

c(x, a) +

∫

vn−1(y)p(dy|x, a)

]

, x ∈ X. (11)
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with v0 := 0. Moreover, there exists a measurable function fn : X → A such
that fn(x) ∈ A(x) for each x, and for every x ∈ X

min
A(x)

[

c(x, a) +

∫

vn−1(y)p(dy|x, a)

]

= c(x, fn(x) +

∫

vn−1(y)p(dy|x, fn(x)).

(12)

The finite horizon Dynamic Programming Equations (11) for vn are well-
known, provided that Assumption 1 holds (see, for instance, Bertsekas and
Shreeve (1978) for universally measurable solutions of (11)). To ensure the
functions vn are Borel measurable we exploit recurrently the equations (11),
Assumption 1 (a), (c) and Corollary 4.3 in Rieder (1978). The fact that
vn ∈ L∞

v is a simple consequence of (11), Assumption 1(b) and (10). At last,
the existence of a measurable minimizers fn in (12) follows from Assumption
1(a), (c) and the mentioned result in Rieder (1978). The lower semicontinuity
of the functions a → c(x, a) +

∫

vn−1(y)p(dy|x, a), needed in order to use
Corollary 4.3 in Rieder (1978), can be verified similarly to the proof of Lemma
4.2 in Gordienko and Hernández-Lerma (1995a).

The proof of the following Lemma is given in Gordienko and Herrnández-
Lerma (1995b).

Lemma 5 Suppose that Assumption 1, 2 and 3 hold. Then:
(i) for every stationary policy f the average cost J(x, f) is finite;
(ii) J(x, f) ≡ J(f) does not depend on initial states x ∈ X; and moreover,
(iii) J(f) =

∫

c(y, f(y))µf(dy).

Now we study the ergodicity properties of the processes under consider-
ation which will be used in the proofs in Section 5. The point is to establish
that the process with the transition probability p(·|x, f(x)) is geometrically
ergodic (uniformly in stationary policies f ∈ Πs) with respect to the weighted
total variation norm ‖·‖v defined in (5).

Given any stationary policy f ∈ Πs and initial state x ∈ X, let µ
(t)
x,f

denote the distribution of xt.

Lemma 6 Suppose that Assumptions 2 and 3 hold. Then for each stationary
policy f ∈ Πs and every x ∈ X,

∥

∥

∥
µ

(t)
x,f − µf

∥

∥

∥

v
≤ ν

−1
‖µf‖v

v(x)βt, t = 0, 1, 2, ..., (13)

where v = infx∈X v(x), and the constant β is from (6).
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Proof. Let f ∈ Πs be an arbitrary stationary policy. Consider a Markov
process with the transition probability p(·|x, f(x)), x ∈ X. Under Assump-
tion 3 the corresponding transition operator Tf defined by the formula:

Tfµ(·) :=

∫

p(·|x, f(x))µ(dx)

is a bounded operator on Mv. Indeed, as it was shown in Kartashov (1985),

‖Tf‖ := sup
‖µ‖

v
≤1

‖Tfµ‖v
= sup

x∈X

[v(x)]−1

∫

v(y)p(dy|x, f(x)), (14)

where ‖·‖ stands for the operator norm corresponding to the norm ‖·‖v in
Mv.

From (14) and Assumption 3 follows that

‖Tf‖ ≤ sup
x∈X

[v(x)]−1

∣

∣

∣

∣

∫

v(y)p(dy|x, f(x))−

∫

v(y)p(dy|x∗, a∗)

∣

∣

∣

∣

+ sup
x∈X

[v(x)]−1

∫

v(y)p(dy|x∗, a∗)

≤ sup
x∈X

[v(x)]−1

∫

v(y) |p(dy|x, f(x)) − p(dy|x∗, a∗)| + v
−1

∫

v(y)p(dy|x∗, a∗)

≤ sup
x∈X

[v(x)]−1β[v(x) + v(x∗)] + v
−1

∫

v(y)p(dy|x∗, a∗) < ∞.

Boundedness of the operator Tf and Assumption 3(a) provide the validity
of the hypotheses of Theorem D in Kartashov(1985). This theorem yields
that the Markov process with transition probability p(·|x, f(x)) is uniformly
ergodic with respect to the norm ‖·‖v . In particular, the stationary projector
Pf of the kernel p(·|x, f(x)) is a bounded operator on Mv. Therefore,

‖µf‖v
< ∞. (15)

Moreover, from Theorem 4 in Kartashov (1985) we get
∥

∥T t
f − Pf

∥

∥ ≤ v
−1

‖µf‖v
βt, t = 1, 2, ....

Now, denoting by δx the Dirac measure concentrated at the point x ∈ X,
we can write

∥

∥

∥
µ

(n)
x,f − µf

∥

∥

∥

v
=

∥

∥T n
f δx − Pfδx

∥

∥

v
≤

∥

∥T n
f − Pf

∥

∥ ‖δx‖v

≤ v
−1

‖µf‖v
v(x)βn, n = 1, 2, ...,

because of ‖δx‖v =
∫

v(y)δx(dy) = v(x).
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Lemma 7 Suppose that Assumption 2 and 3 hold. Then

sup
f∈Πs

‖µf‖v
≤ B, (16)

where B := (1 − β)−1[βv(x∗) + ‖p(·|x∗, a∗)‖v] < ∞.

Proof. Let f ∈ Πs be an arbitrary stationary policy. By invariance of
the measure µf we have

‖µf‖v
=

∫

v(x)µf (dx) =

∫

v(x)

∫

p(dx|y, f(y))µf(dy). (17)

In view of (15)we can apply the Fubini Theorem to obtain from (17) the
following:

‖µf‖v
=

∫

µf(dy)

∫

v(x)p(dx|y, f(y))

=

∫

µf(dy)

∫

v(x)λy(dx) +

∫

µf (dy)

∫

v(x)p(dx|x∗, a∗),

where λy(·) := p(·|y, f(y))− p(·|x∗, a∗).
Therefore

‖µf‖v
≤

∫

µf(dy)

∫

v(x)|λy|(dx) +

∫

v(x)p(dx|x∗, a∗)

≤

∫

µf(dy)β[v(y) + v(x∗)] +

∫

v(x)p(dx| x∗, a∗),

by Assumption 3. Hence

(1 − β) ‖µf‖v
≤ βv(x∗) +

∫

v(x)p(dx|x∗, a∗),

where the right-hand side of the last inequality is finite, and it does not
depend on f ∈ Πs.

5 MAIN RESULTS

The following theorem states that Assumptions 1, 2 and 3 provide the exis-
tence of the solution of ACOE and thus, the existence of an average optimal
stationary policy.
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Theorem 8 Under the assumptions 1, 2 and 3 there exist a constant ρ∗, a
function φ in L∞

v and a stationary policy f∗ ∈ Πs such that

ρ∗ + φ(x) = min
A(x)

{

c(x, a) +

∫

φ(y)p(dy|x, a)

}

(18)

= c(x, f∗(x)) +

∫

φ(y)p(dy|x, f∗(x)), x ∈ X;

ρ∗ = J(x, f∗) = inf
Π

J(x, π), x ∈ X. (19)

Moreover, φ is unique (up to adding a constant) function in L∞
v satisfying

ACOE (18), and the policy f∗ is average cost optimal due to (19).

Theorem 1 was proved in Hernández-Lerma (1995) under Lyapunov-Like
conditions that are a little different from used in this paper. Nevertheless,
we can use this proof since it is based on the following:

(i) Certain continuity properties of transition of transition law of MCP
under consideration (to ensure the existence of measurable selectors).

(ii) Geometrical ergodicity of a process with respect to the norm ‖·‖v

when using stationary policies.
Assumption 1 yields continuity properties required in (i). On the other

hand, geometrical ergodicity was proved in Lemma 6.
Now we are ready to estimate a rate of convergence in the following value

iteration procedure (see for instance, Hernández-Lerma (1989)).
Let z ∈ X be an arbitrary, but fixed state. Define a sequence of real-

valued functions φn as φn(x) := vn(x) − vn(z), x ∈ X, where the functions
vn(x) are from (8). The solution φ to (18) can be taken in such a way that
φ(z) = 0. If limn→∞ φn(x) = φ(x) for each x ∈ X it is said that one has the
convergence of the value iteration procedure.

Theorem 9 Suppose that Assumptions 1, 2 and 3 hold. Then

|φn(x) − φ(x)| ≤ B ‖φ‖v [v
−1

+ v(z)]βnv(x), x ∈ X (20)

where B = (1 − β)−1[βv(x∗) + ‖p(·|x∗, a∗)‖v], and the constant β < 1 is
from Assumption 3.
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Remark 10 As it is shown in Gordienko and Montes-de-Oca (1994)

‖φ‖v ≤ (1 − β)−1 max[1, v
−1

(1 − β)−1{βv(x∗) + ‖p(·|x∗a∗)‖v}][1 + v
−1

v(z)].

Proof. Let A∗(x) ⊂ A(x), x ∈ X, denote the set of actions for which
the minimum of the right-hand side of the first equality in (18) is attained.
Consider the MCP (X, A, A∗(x), p,−φ) with the sets of admissible controls
A∗(x), x ∈ X and the cost function c1(x, a) := −φ(x), (x, a) ∈ K, where φ is
the solution to ACOE (18). Theorem 8 implies φ ∈ L∞

v , and consequently,
Assumption 1 holds true for this process. Since the maps a → c(x, a) and
a →

∫

φ(y)p(dy|x, a) are l.s.c., and A(x) is compact, the set A∗(x) is compact
for every x∈ X. Taking in consideration Assumption 1(c), and Corollary 4.3
in Rieder (1978) about measurable minimizers, we can apply Theorem 8 to
the process (X, A, A∗(x), p,−φ) to get a stationary policy f1that satisfies the
ACOE:

ρ1 + ϕ(x) = −φ(x) + min
A∗(x)

∫

ϕ(y)pdy|x, a)

= −φ(x) +

∫

ϕ(y)p(dy|x, f1(x)), x ∈ X. (21)

Let Π1be the class of all stationary policies for which f(x) ∈ A∗(x), x ∈
X. Using Lemma 5, ergodicity of the process in ‖·‖v and the fact that φ ∈ L∞

v

we easily verify that
∫

[−φ]dµf1
= inff∈Π1

∫

[−φ]dµf . In Hernández-Lerma
(1995) is proved more:

∫

φdµf1
= sup

f∈Πs

∫

dµf · (22)

As it was shown in Montes-de-Oca and Hernández-Lerma (1996) the equa-
tion (21) yields the policy f1 to be a canonical, i.e. if

Jn(x, π; φ) := Jn(x, π) + Eπ
x φ(xn), π ∈ Π, n = 1, 2, .... (23)

then

nρ∗ + φ(x) = Jn(x, f1; φ) = J∗
n(x, φ) := inf

π∈Π
Jn(x, π; φ) (24)

for each x ∈ X, n = 1, 2, .... Comparing (23) and (24) we conclude that

nρ∗ + φ(x) = inf
f∈Πs

{Jn(x, π) + Eπ
x φ(xn)} ≤ vn(x) + sup

f∈Πs

Eπ
xφ(xn). (25)
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In view of (22), (13) and (16) the last inequality implies the following:

nρ∗ + φ(x) − vn(x) ≤ sup
f∈Π

Eπ
xφ(xn) − sup

f∈Πs

∫

φdµf +

∫

φdµf1

≤ sup
f∈Πs

∣

∣

∣

∣

∫

φdµ
(n)
x,f −

∫

φdµf

∣

∣

∣

∣

+

∫

φdµf1

≤ sup
f∈Πs

∫

sup
X

[|φ|/v| v
∣

∣

∣
dµ

(n)
x,f − µf

∣

∣

∣
+

∫

φdµf1

≤ ‖φ‖v v
−1

Bv(x)βn +

∫

φdµf1

≡ B1v(x)βn +

∫

φdµf1
, (26)

where B1 := ‖φ‖v v
−1

B.
Since vn(z) ≤ Jn(z, f1) the inequality:

nρ∗ + φ(z) − vn(z) = Jn(z, f1) + Ef1

z φ(xn) − vn(z) ≥ Ef1

z ϕ(xn). (27)

follows from (24).
Remembering that φ(z) = 0 and φn(x) = vn(x)− vn(z), we get from the

inequalities (26) and (27) that

− B1β
nv(x) + Ef1

z φ(xn) −

∫

φdµf1
≤ φn(x) − φ(x) (28)

≤ B1β
nv(x) +

∫

φdµf1
− Ef1

x φ(xn).

Now

−B1v(z) + βn ≤ Ef1

z φ(xn) −

∫

φdµf1
,

and
∫

φdµf1
− Ef1

z φ(xn) ≤ B1v(x)βn

by virtue of Lemma 6.
The last inequalities together with (28) provide the following inequality:

−B1β
nv(x) − B1β

nv(z) ≤ φn(x) − φ(x) ≤ B1β
nv(x) + B1β

nv(z),
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that, finally proves the desired bound (20):

|φn(x) − φ(x)| ≤ B1β
n[v(x) + v(z)v(x)/ inf

X
v(x)] = βnv(x)B1[1 + v(z)/v].

Now following Hernández-Lerma (1989), Gordienko and Hernández-Lerma
(1995b) we introduce the stationary policies fn, n = 1, 2, ... determined by
the finite horizon value functions vn in (8) and (11). We use these policies
to approximate the average cost optimal policies in the sense that for each
x ∈ X,

lim
n→∞

J(x, fn) = ρ∗ = J(x, f∗) = inf
Π

J(x, π),

with the notations of Theorem 8. In view of Lemma 5 we can rewrite last
equalities as limn→∞ J(fn) = ρ∗.

For each n, the stationary policy fn is defined by the function fn(x) from
Lemma 4, i.e. fn(x) is a measurable minimizer of c(x, a)+

∫

vn−1(y)p(dy|x, a)
over A(x). For the calculation of vn by means of (11) some numerical proce-
dures could be offered (at least when the state space X is a compact), while
to find a solution φ to the equation (18) in order to get the average cost opti-
mal policy f∗ is a very difficult problem. Also, we give the upper bound for
a rate of convergence which allows to inspect an accuracy of approximation
due to the fact that all constants in this bound are calculable.

Theorem 11 Suppose that Assumptions 1, 2 and 3 hold. Then there exists
constant d < ∞ such that

0 ≤ J(fn) − ρ∗ ≤ dβn, for n = 1, 2, ... (29)

Remark 12 The constant d can be easily calculated explicitly in terms of
β, v, v(x∗), v(z) and ‖p(·|x∗, a∗)‖v .(See the proof below.)

Theorem 13 Remark 14 Proof. First we estimate the difference J(fn)−
ρ∗ in terms of discrepancy function

D(x, a) := c(x, a) +

∫

φ(y)p(dy|x, a)− φ(x) − ρ∗, (30)

13



used often to prove average cost optimality. (See e.g. Arapostathis, et al
(1993), Hernández-Lerma (1989)). By virtue of invariance of the measure
µf and Lemma 5 we have
∫

D(x, f(x))dµf =

∫

c(x, f(x))dµf +

∫

φ(y)

∫

p(dy|x, f(x))dµf(x) −

∫

φdµf − ρ∗

= J(f) +

∫

φdµf −

∫

φdµf − ρ∗ = J(f) − ρ∗.

The definition of ‖·‖v and Lemma 5 provide the inequality

0 ≤ J(f) − ρ∗ =

∫

D(x, f(x))v(x)/v(x)dµf

≤ ‖D(·, f(·))‖v ‖µf‖v
≤ B ‖D(·, f(·))‖v , (31)

that holds for each stationary policy f ∈ Πs.
Applying (31) to the policy fn we estimate ‖D(·, fn(·))‖v .
The equations (12) are equivalent to the following equalities

jn + φn(x) = min
A(x)

{

c(x, a) +

∫

φn−1(y)p(dy|x, a)

}

(32)

= c(x, fn) +

∫

φn−1(y)p(dy|x, fn(x)), x ∈ X, n = 1, 2, ...,

where vv(z) − vn−1(z) is denoted by jn. Then we substitute

c(x, fn) = jn + φn(x) −

∫

φn−1(y)p(dy|x, fn(x))

to the definition of D in (30) to obtain:

|D(x, fn)| = |(jn − ρ∗) + [φn(x) − φ(x)] −

∫

[φn−1(y) − φ(y)]p(dy|x, fn(x)|

≤ |jn − ρ∗| + |φn(x) − φ(x)|

+ ‖φn−1 − φ‖v

∫

v(y)p(dy|x, fn(x)). (33)

Lemma 2 implies the following inequality for the integral in (33)
∫

v(y)p(dy|x, fn(x)) ≤ β[v(x) + v(x∗)] + ‖ p(·|x∗, a∗)‖v .

≤ v(x)[β + {βv(x∗) + ‖p(·|x∗, a∗)‖v}/v].

14



The geometric upper bounds for |φn(x) − φ(x)| and ‖φn−1 − φ‖v in (33) are
supplied by Theorem 9. To complete the proof we estimate the term |jn − ρ∗|
in (33), making use of the equality (32), ACOE (18) and the inequality (10).
We have

|jn − ρ∗| ≤ |φn(x) − φ(x)|

+

∣

∣

∣

∣

min
a∈A(x)

{

c(x, a) −

∫

φn−1(y)p(dy|x, a)

}

− min
a∈A(x)

{

c(x, a) −

∫

φ(y)p(dy|x, a)

}
∣

∣

∣

∣

≤ |φn(x) − φ(x)| + sup
a∈A(x)

∫

|φn−1(y) − φ(y)|p(dy|x, a)

≤ |φn(x) − φ(x)| + | ‖φn−1 − φ‖v sup
a∈A(x)

∫

v(y)p(dy|x, a)

≤ |φn(x) − φ(x)| + ‖φn−1 − φ‖v v(x)[β + {βv(x∗) + ‖p(·|x∗, a∗‖v]/v]

Again exploiting Theorem 2 we, finally, obtain (29).

6 Remarks and an example

Remark 15 In chapter 3 in Hernández-Lerma (1989) inequalities similar
to (20) and (26) were proved for MCPs with bounded one-stage costs c. It
was done under the assumption (1)

Remark 16 The definition of stationary policies fn as minimizers of c(x, a)+
∫

vn−1(y)p(dy|x, a) in (11) presupposes precise calculation of the value func-
tions vn. This is not realistic condition from the point of view of constructing
numerical algorithms . Analysis of the proof of Theorem 11 shows that it
can be extended in the following direction. Suppose we get a sequence of
measurable functions {vn} for which

|vn(x) − vn(x)| ≤ εnv(x), εn ≥ 0, x ∈ X.

Let us define for n = 1, 2, ... stationary policies f n as minimizers on A(x) of
the functions

c(x, a) +

∫

vn−1(y)p(dy|x, a).

The upper bounds for ”errors of approximation” J(x, f n)−ρ∗ can be obtained
similarly to the proof of Theorem 11. Besides the term dβnas in (26) these

15



bounds contain a summand depending on values of εn. Such bounds could
be also useful to construct adaptive control policies for MCPs with unknown
transition laws p(·|x, a) which need to be estimated recurrently in the course
of realization of a process. (For more information on this type policies see,
for example, Hernández-Lerma (1989) or Gordienko (1985)).

Another possible application of the extension of Theorem 11 mentioned
above is a use of it to obtain upper bounds of robustness of MCPs of type
considered here (see Gordienko (1992)).

Remark 17 It seems to be truth that under assumption made the rate in
(26) could not be improved. On the order hand, it is interesting to compare
(29) with the result in Puterman and Brumelle (1979) which proves the rate
of convergence of the policy iteration procedure to be faster than geometric
one. In Puterman and Brumelle (1979) this fact was shown for some finite
state MCPs with a discounted reward. The numerical experiments presented
in White and Scherer (1994) show that a rate of convergence of value iteration
can be faster than exponential in the discounted problem for finite state-action
MCPs.

Now we give an example of MCP that satisfies Assumptions 1,2, and 3 in
Section 3.

Example 18 A controlled autoregression process.

Consider the process of the form:

xt+1 = ρ(at)xt + ξt, t = 0, 1, ..., (34)

where : ξ0, ξ1, ξ2, ..., are independent uniformly distributed on [0, 1] random
variables. The process (34) is MCP when we choose the state space X :=
[0,∞), the sets of admissible actions A(x) ≡ A, x ∈ X, with A ⊂ <
being a compact set, and define some nonnegative measurable, and lower
semicontinuous in a one-stage cost function c(x, a). We suppose that ρ :
A → (0, α] is a given measurable function and α < 1

2
.

We will verify Assumptions 1,2 and 3 taking v(x) := x+δ, x ∈ X, where
δ = (1 − 2α)/2. Also we suppose that supa∈A |c(x, a)| ≤ x + δ, x ∈ X. It is
easily to check fulfillment of Assumption 1(c) for this example. Straightfor-
ward calculations of ‖p(·|x, a) − p(·|x,, a,)‖v show that the inequality (6) in
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Assumption 3 holds with β = α + 1
2
. On the other hand, the condition (7)

is satisfied because E(ξ0) is finite. Finally, Assumption 2 follows from next
proposition.

Proposition 19 Consider the Markov process

xt+1 = L(xt)xt + ξt, t = 0, 1, ..., (35)

with independent uniformly distributed on [0, 1] random variables ξ0, ξ1, ξ2, ...,
x0 ∈ [0,∞), and L : X → < a measurable function. If L(xt) ≤ γ < 1, and m
is the Lebesgue measure on [0, 1], then the process (32) is m-irreducible,
aperiodic and satisfies the Doeblin´s condition for the measure m.

The Doeblin´s condition is valid evidently. The irreducibility can be
derived from the facts that

xn = x0

n−1
∏

t=0

L(xt) + ζn + ξn,

ζn =

n−1
∑

t=0

t
∏

s=1

L(xs)ξn−s,

ζn and ξn are independent, and for any ε > 0,

x0

n−1
∏

t=0

L(xt) < ε, P (ζn < ε) > 0 for some n ≥ 1.

If we suppose that the process (35) has a period k > 1, then there are
disjoint sets C1, ..., Ck ⊂ [0,∞) such that p(∪k

i=1Ci|x) = 1, x ∈ ∪k
i=1Ci, and

p(Ci|x) = 0 if x ∈ Ci, i = 1, ..., k. Writing the transition probability p(·|x)
of (35) trough the Lebesgue measure we can find z ∈ [0, 1] ∩ Cj, for some
j ≤ k such tha p(Cj|x) > 0.

Remark 20 The above example is like to be degenerate if we are thinking of
MCPs with unbounded costs. The reason is that the support of the invariant
probability µf is in the interval [0, 2] for each fεΠs. Nevertheless, to avoid
this effect it is possible to choose a distribution of the random variable ξ0 with
an unbounded support, but to be close with respect to the norm ‖·‖v to the
uniform distribution on [0, 1]. Then the inequality (6) in Assumption 3 holds
true with some β > α + 1

2
.
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It seems to be a difficult problem to satisfy Assumption 3, when one deals
with particular MCPs in applied fields. Indeed, it is not clear how to look
for a suitable ”excessive function” v(x) in (6). Sometimes it is easier to verify
the following set of conditions which could be used instead of Assumption 3
to prove Theorems 1,2 and 3.

a)
∥

∥

∥
µ

(t)
x,f − µf

∥

∥

∥

v
≤ bv(x)βt, t = 0, 1, 2, ... for some β < 1;

b) supf∈Πs

‖µf‖v
< ∞;

c)
∥

∥supf∈Πs

∫

v(y)p(dy|x, f(x))
∥

∥

v
< ∞.

In the case of bounded cost function c we need only the condition (a) with
v(x) = constant and ‖·‖v to be reduced to the usual total variation norm.
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